

LAL.

Industrialization: Why?

Start	:	Prototypes	Quality:	- uneven
		(30 Couplers)		- occasional anomalies
			<u>Manufacturing:</u>	
			- lc	ong and difficult
	Industriali	zation	- p	rocedures not fully defined
	process			
			<u>High cost</u>	
			Quality	agual far all agualara
				- equal for all couplers
				- reproducible
End:		Large series	Manufacturing:	- regular processes
		(1000 Couplers)		- written procedures

LAL-

Lower cost

Industrialization: What for ?

Objectives:

- 1. To improve the quality
- 2. To define precisely:
 - all the manufacturing processes
 - the control plan for quality assurance
 - the necessary manufacturing equipment
 - the required skills
 - the manufacturing sequences
 - the schedule
 - the required space needed for all steps
 - the costs
 - the **risks** (technical, procurement, financial)
- 3. To reduce the manufacturing costs

Use the experience gained in previous fabrications

During the fabrication of 30 power couplers type TTF-3, several critical points were identified:

- 1. 316LN steel (procurement is difficult in the USA)
- 2. TIG welding (uniform and smooth)
- 3. Ceramic / copper brazing
- 4. Steel / copper brazing
- 5. Cu plating
- 6. TiN coating (10nm) on ceramic windows
- 7. EB welding (full penetration but must protect RF surfaces)
- 8. Geometrical tolerances (very difficult to respect)
- 9. Tooling and fixtures
- 10. Handling, transport and cleanliness issues (special care)

\rightarrow Each critical point had to be investigated for solutions

Conclusions on technology issues concerning fabrication of 30 prototype couplers

• Solutions were found for all technological difficulties which were acceptable for a small series, but not for mass production

• The company proposed some solutions of their own, through their knowledge in the domain (brazing in partial pressure oven, automatic TIG welds, laser welds)

• Cu coating was a major difficulty (several anomalies, thickness non-uniformity, unreliable process, unclear which process was adequate)

• Assembly tolerances were very difficult to meet (circularity, concentricity, perpendicularity) and must be relaxed for the future series.

Prototypes: high cost

Cost for 30 couplers:

LAL.

- Fixed costs
- Toolings costs
- Recurrent cost

Cost objective for 1000 couplers:

- Fixed costs
- Toolings costs

• Recurrent cost 10 000 € / unit (fabrication only)

Significant cost reduction. Great effort is needed through industrial studies

Before industrialization: specifications changes

TTF-3 Coupler

LAL-

- 4 diagnostics removed
- motorized tuning

XFEL Coupler

X-FEL coupler

→ Review drawings of each component in terms of tolerances

LAL-

Industrialization: How? -1-

Necessary starting step: Functional analysis

- → Thought process: Review the existing construction procedures:
 - technical specifications and performance
 - materials
 - tolerances
 - assembly processes: types of welds, brazes
 - interfaces
 - > mounting sequences

→ Organize brainstorming sessions focused on precise subjects.

Product tree analysis:

Component Function	Ceramic Window + TiN	Outer conductor	Big flange	Bellows	Cu rings	Cavity flange	Cu coating	Antenna	Inner conductor connexion
Electrical conductivity									
Thermal functions									
Vacuum									
Tuning range									
Minimize multipacting									
Assembly sequence									

 \rightarrow Write the functional specifications in each concerned square

Analysis of each function results in:

- options for design
- options for materials
- options for component junctions

Each options has to be investigated in terms of:

- compatibility
- feasibility
- availability
- cost

LAL-

Existing fabrication processes for Prototypes :

In general, a system is composed of several parts produced by material removal processes:

- lathe turning
- milling
- drilling
- abrasion, erosion
- → Large number of parts: long manufacturing time
- → large number of junctions (welds or brazes)

New fabrication processes for large series: processes.

look for simple and reliable

Prefer deformation processes:

- spinning
- hydroforming
- casting, molding
- → Smaller number of parts: short manufacturing time
- \rightarrow Smaller number of junctions: short assembly time

Example of part number decrease by choice of fabrication process

Number of parts

	Prototype coupler	XFEL coupler
Cold assembly	13	9
Warm assembly	22	14
Total	35	23

Number of junctions

	Prototype coupler	XFEL coupler
Cold assembly	12	8
Warm assembly	21	13
Total	33	21

advantages:

INC.

- ➢ gain in manufacturing time: cheaper process and 30% smaller number of parts
- ➢ gain in assembly time: 30% smaller number of junctions

Identify cost reductions by component

→ Fabrication Methods

Example: conical tube

Unit price for a series of 1000:

LAL-

- fabrication by machining: 58 €
- fabrication by spinning: 25 €

According to a recent survey by LAL

Identify cost reductions by component - 2 -

\rightarrow Simplify design

Example: Transition box

Present design: 5 Cu plates and 7 other parts machined and soldered

→ unit cost: 3140 €

Alternatives:

- CuBe cast (lost wax technique), replaces 12 parts by a single one
- → unit cost: 1400 € (-55 %)
- Zamac cast + conductive coating (even cheaper)

→ Simplify concept

Example:

LAL.

Cold external conductor

Present design: bellows collars are machined + welded to standard bellows Alternative: bellows including special collars are hydroformed together in 1 part

Identify cost reductions by component - 4 -

→ Adapt design to methods

Example: Connexions to warm tube

Present design:

connexions are cut and welded

Alternative: connections made by pull-out

 \rightarrow

Industrialization: Topics of development -1-

- → Design must be optimised for « manufacturability »
- Review existing design
- I dentify the necessary functions
- Determine maximum acceptable tolerances
- I dentify possible options for design
- Seek functional simplicity :
 - to minimise the number of parts
 - use standard products whenever possible
 - design for ease of assembly: several assembly solutions are possible, investigate and optimise
 - design for ease of control and test
 - design in view of packing and transport

Industrialization: Topics of development -2-

- Risk mitigation:
 - Assessment and re-design of areas of technical risk
 - Generation of product and process specifications
 - Update design
- Validation phase:
 - Modelling of components and processes
 - Testing

INI.

- Prototypes
- Update design
- Other design topics to be considered:
 - reliability (of components, welds, coatings)
 - other risks (of procurement, financial)
 - MTBF, failure analysis (welds, windows)
 - maintainability (easiness of replacement)
 - ergonomy (handling, assembly)

• Interfaces:

1. <u>Mechanical parameters</u>

- Authorized volume and mass
- Interface surface: position, orientation, dimensions, tolerances, surface finish, material, limit of deliverables
- 2. <u>Vacuum parameters</u>
 - Flange type, vacuum, desorption rate, port conductance
- 3. <u>Thermal parameters</u>
 - Dissipated thermal power, interface with thermal screens
- 4. <u>Electrical parameters</u>
 - Limit of deliverables, connectors, power supply, data protocol
- 5. <u>Constraints on stability, position</u>
- 6. <u>Constraints on cleanliness</u>
- 7. <u>Environmental parameters:</u> temperature, X radiations, EMI
- 8. Assembly and integration constraints
 - Alignment, references, tooling and fixtures, storage and handling
 - Assembly sequences, cabling
- 9. <u>Time schedule constraints</u>

Industrialization: Check ?

\rightarrow I terative process after every change

Verification phase

Several possible new designs may result from the functional analysis:

- \rightarrow Verify that the desired specifications are fulfilled
- → Check the coherence of interfaces
- \rightarrow Produce prototypes
- → Establish a test program
- \rightarrow Analyze the results
- → Make corrective actions if necessary
- \rightarrow Decide on the solution to be retained
- → Finalize Manufacturing Control Plan

For the XFEL power couplers, industrialization studies will be performed through what we (in France) call "Definition contracts" :

- Essentially intellectual work (dialog between the industry and our Lab) :
 - Define all manufacturing processes
 - Risk analysis (process, logistics)
 - Determine cost in series and justify it
- Produce 2 prototypes (to be tested at LAL Orsay)

Particularities

- 3 contracts will be awarded on the same subject: « Industrial studies »
- 2 suppliers will be selected after final evaluation
- contracts for manufacturing 2 series of 500 XFEL couplers will be awarded without a new call for tenders
- the 2 contracts may be awarded to a single company

What do we gain ?

For DESY / IN2P3:

- minimize risks related to project:
 - all technical difficulties will be re-solved
 - development plan is prepared
- minimize financial risks:
 - precise estimation of cost in series
 - assurance that the chosen contractors will succeed
- gaine time on manufacturing contract: all studies will be complete

cy /

PROCEDURE FOR RESTRICTED CALL FOR TENDERS

Follow-up and evaluation of definition contracts

- 1. Continuous evaluation of performance
 - contracts will run simultaneously during 21 months
 - Regular progress reports
 - Continuous control of industry activity
- 2. Formal reviews are key points with delivery of documents, models and prototypes
 - SDR (System Design Review)
 - PDR (Preliminary Design Review)
 - CDR (Critical Design Review)
 - Final Review

LAL-

Mile-stones of the definition contracts

Contract Award: T₀

Kickoff meeting: soon after T₀

System Design Review: $T_0 + 3$ months

- functional analysis
- identification of processes and proposal for models
- preliminary development plan, management plan

Preliminary Design Review: T₀ + 8 months

- models for welding, brazing, specific materials, Cu coating
- Quality assurance plan
- development plan, management plan
- Technical design review
- preliminary risk analysis

Critical Design Review: $T_0 + 14$ months

- final models for validation of Cu coating
- final justification design file
- final risk analysis
- preliminary cost analysis

Final Review:

INC.

$T_0 + 21$ months

- delivery of 2 prototypes
- plan for logistics of manufacturing and conditioning
- final cost report

Deliverables for the definition contracts

1 - <u>Technical reports:</u> spread over 3 intermediate reviews (see time schedule)

- Conduct and comment all studies necessary for the fabrication of couplers, including TiN deposit
- Determine and explain the manufacturing processes, provide models for validation of each process
- Finalize and justify the mechanical design in view of lower cost in series and shorter time of assembly, evaluate risks
- Define and comment the sequences of **assembly** and **conditioning** of couplers, estimate time for assembly sequences
- Determine and comment the manufacturing **logistics** (in manpower, in building area) including conditioning, and evaluate difficulties and risks
- Establish a project management plan for the manufacturing in series:
 - . PBS, WBS
 - . interfaces
 - . Cost control, time schedule control
 - . Management of changes
 - . Quality assurance
 - . Risk management
 - . Documentation control
- Establish a manufacturing schedule including conditioning and delivery

2 - Deliver validation models and 2 prototypes:

- models to validate each manufacturing process (welding, brazing, spinning, Cu coating, ...)
- 2 prototypes assembled on test stand ready for conditionning:
 - already cleaned, baked, assembled, vacuum pumped and leak tested

3 - Financial report:

Objective: \rightarrow Commitment to a unit price in series, for 500 and for 1000 couplers

- Fill out a detailed price list including manufacturing, assembly and HF conditioning (Klystrons and modulators could be provided by the XFEL project), packing and transport on site

- Deliver a detailed report on price justification analysis

LAL-

ILC Meeting – Snowmass, August 2005

Financial report includes:

Price lists for 500 and 1000 couplers

Item	Description	Unit cost	Quantity	Total cost
A1	Manufacturing file		1	
A2	Project management		1	
A3	Quality assurance		1	
A4	Documentation		1	
A5	Equipment and logistics for assembly and conditioning		1	
A6	Tooling and fixtures for manufacturing			
A7	Tooling and fixtures for assembly and conditioning			
A8	Other fixed costs		1	
A9	Pre-series prototypes			
A10	Coupler manufacturing (to be detailed in the justification report)		500	
A11	Quality control		500	
A12	Cleaning, assembly and preparation for conditioning		500	
A13	Conditionning		500	
A14	Packing and transport		500	
A15	Other recurrent costs		500	
Α	Total project cost for 500 couplers			

At the end of the definition contracts:

 Overall performance of candidates must be rated by an evaluation procedure

- Questions must be answered for each contract:
 - 1. Is it technically acceptable?
 - 2. Is it financially acceptable?
- For the future mass fabrication:

1 or 2 manufacturing contracts ?

LAL ____

PROCEDURE OF EVALUATION OF THE DEFINITION CONTRACTS

Criteria of evaluation of definition contracts - 1

ltem	Points
Evaluation of technical report:	
 1. criteria concerning the design : completeness of resolution of manufacturing technical problems functional adequacy of design reliability of proposed manufacturing process completeness of procedures definition and knowledge credibility of quality assurance easiness of assembly, of conditioning and integration originality of proposed solutions in terms of cost reduction credibility of technical risks analysis 	50
 2. criteria concerning project management : management plan tools for quality assurance management relevance of logistical means foreseen competence and adequacy of the team reactivity to changes in technological choices credibility of project risk analysis 	25
3. criteria concerning schedule : - relevance of manufacturing schedule - tools for schedule control	15

Criteria of evaluation of definition contracts - 2

Item	Points		
Evaluation of demonstration models: tests results technical functionalism and cost impact easiness of implementation of represented process 			
Evaluation of prototypes: - quality of manufacturing - pumping speed, vacuum values, desorption rate, residual gasses - time for conditioning at LAL's test station - originality of design with respect to simplicity - easiness of assembly	10 7 8 5 5		
 Evaluation of the financial report: price list for manufacturing in series (to which will be added the costs of project follow-up taken in charge by IN2P3) price justification report financial risk analysis 			
Total points	300		

LAL-

Time schedule of industrial studies for XFEL Power Couplers

	Nom de la tâche	Début	Fin	2005 2006 2007
1	Industrialization phase	01/06/04	02/10/07	
2	Drawings preparation	01/09/04	28/02/05	
3	Drawings update	01/03/05	12/09/05	
4	Thermal studies	01/06/04	28/02/06	
5	HF analysis (tolerances studies)	01/06/04	10/12/04	
6	Studies of motorized tuning and control	01/10/04	30/06/05	
7	Coupler conditioning studies	13/07/04	28/02/06	
8	TiN coating technology development	03/01/05	28/02/06	
9	Call for tenders preparation	01/06/04	31/03/05	
10	Notification for tenders	15/02/05	15/02/05	♦ _15 <mark>02</mark>
11	Time for receipt of candidacy	15/02/05	22/03/05	
12	Selection of candidates	23/03/05	18/04/05	
13	Tender documents are sent	18/04/05	18/04/05	18/04
14	Time for receipt of tenders	19/04/05	27/05/05	
15	Tenders analysis and audits	30/05/05	27/07/05	
16	Award of 3 definition contracts	27/07/05	27/07/05	₹ 27/0 <mark>7</mark>
17	Technology transfer to industry	24/03/06	24/03/06	24/03
18	Progress of 3 definition contracts	28/07/05	02/05/07	
19	System Design Review	21/10/05	21/10/05	* 21/10
20	Preliminary Design Review	24/03/06	24/03/06	♦ 24/03
21	Critical Design Review	22/09/06	22/09/06	◆ 22/09
22	Final Review	27/04/07	27/04/07	◆ 27/04
23	Analysis of results	03/05/07	02/10/07	
24	Award of manufacturing contract(s)	02/10/07	02/10/07	↓ 02/10
25	XFEL couplers manufacturing phase	03/10/07	20/04/11	

LAL-

Schedule of manufacturing phase for XFEL Power Couplers

- Couplers delivered assembled and conditionned, mounted on test stands
- Delivery by series of 40 couplers every month (for assembly of 5 modules) during ~ 2 years

Prototypes: manufacturing problems – 1

Bad centering

Excessive penetration

Spatters of particles

Black stain on ceramic

LAL-

Lack of penetration

Braze splatters

Prototypes: manufacturing problems – 2

Perfect Cu coating

Perfect junction

Stains in Cu coating

Prototypes:

manufacturing problems - 3

Bent bellows

LAL-

Pits in TIG weld

Smooth outer weld

<u>Indent</u>

Uneven outer weld

Prototypes: manufacturing mistakes

Wrong flange orientation

Number of contracts:

- ➤ it is desirable to run several simultaneous contracts:
 - to profit from different companies expertise and know-how
 - to encourage competition
- \succ a number of 3 contracts is optimum
- → But difficult to control 3 contracts at the same time !

Costs: evaluation by duration

INI.

Example of industrial studies for XFEL couplers:

- 1500 hours engineer x 80 € → 120 000 €
- 1500 hours technician $x 50 \in \rightarrow 75000$
- 2 prototypes x 40 000 → 80 000
- Total: 275 000 reduced to **250 k**€ as a package deal
- 3 contracts + follow-up costs → 800 k€

XFEL couplers budget estimated at 20 M€:

industrial studies represent only 4%