Solid-State Modulators for the International Linear Collider

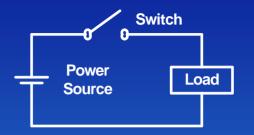
ILC Workshop, Snowmass CO August 2005

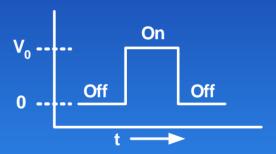
J. Casey, I. Roth, N. Butler, F. Arntz, M. Gaudreau

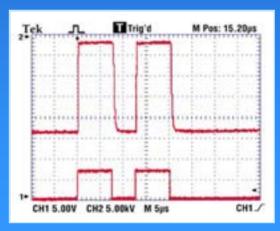
Diversified Technologies, Inc.

- Founded 1987 by Dr. Marcel Gaudreau (MIT)
 - 50 Full Time Employees
 - 11 PhDs (EE, Physics, Aero)
 - Diverse Technical Background
- **Primary Business Areas:**
 - **High Power Electronic Systems**
 - **System Design and Integration**
 - **Manufacturing/Process Automation Systems**
 - **Consulting Engineering**
- PowerModTM Series
 - Solid State Modulators, Power Supplies
 - 1997 & 1999 R&D 100 Award Winner

1999 Award Winner

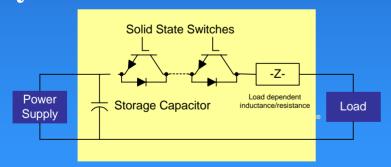


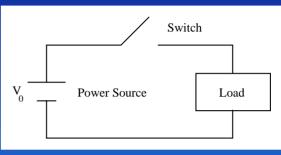

1997 Award Winner

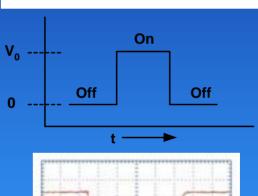


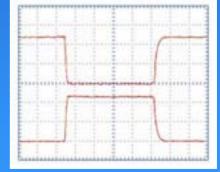
Solid State Switching

- Series String of Transistors
 - All Operate Synchronously
 - Patented Design
- Very High Voltage and Current Demonstrated
 - Up to 200 kV (200,000 Volts)
 - Up to 5 kA (5000 Amperes)
- Extremely Uniform & Reliable Pulses
 - Sub-Microsecond Switching
 - Arbitrary Pulsewidth & Frequency
 - 50 nS CW; > 100 kHZ Continuous



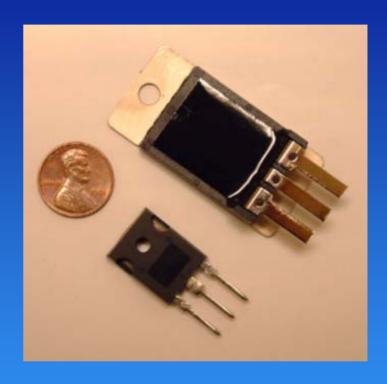



DTI Switches Use Series IGBTs


- Lower-voltage IGBTs in series give high voltages
- Fast (<< 1 μs), open and close
- Nearly ideal pulses
- > 200 systems fielded over 10 years

DTI's PowerMod™ Model

20 kV, 100 A 1 s/div


Smorgasbord of IGBTs & Switch Modules

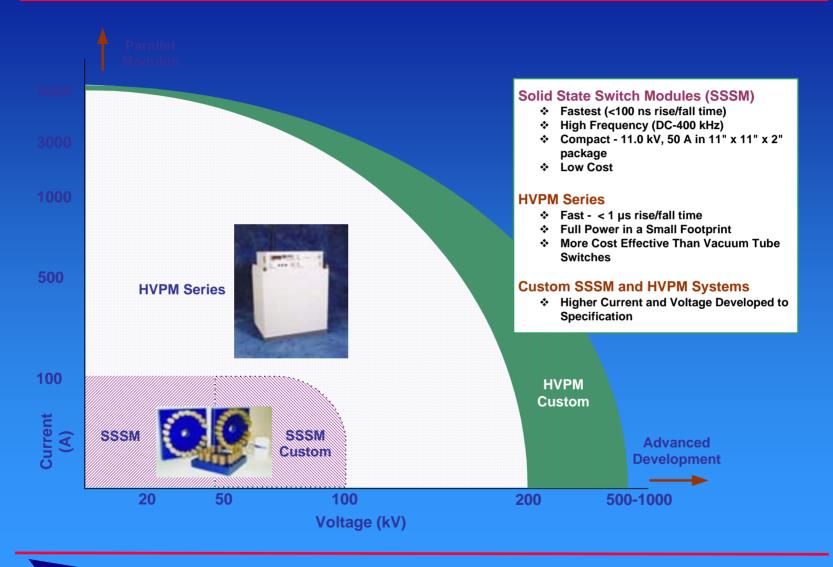
Development of Pulsed Power Devices

- **DTI** is now completing a **DOE** SBIR for development of pulsed-power optimized packaging.
- One early result in this program was the design of the PPT (Pulse Power Transistor, at right), jointly with Powerex, Inc.
- This device eliminates problems with in-package inductance imbalances and gate resistance limitations.

Shipped on several commercial systems to date, now in use by many other pulsed power designers.

High Power Solid State Systems

- Very Fast High Current, High **Voltage Switches**
- Built From Solid **State Components**
- Simplified **Transmitter Designs**
 - Increased Reliability
 - Inherent Fault **Tolerance**
 - High Efficiency
 - Much Less Stress on RF VEDs
- **Increased Flexibility**



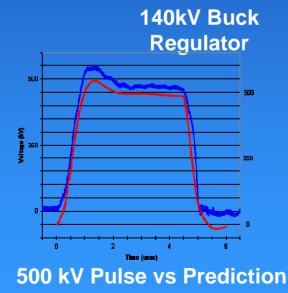
Solid State Switch Modules

HVPS 20-30 Power Supply

DTI Modulator Product Map

Major Market Applications

- PEF / Food Processing
- Medical / Industrial Accelerators
- Large Physics Projects (SNS, ILC, ITER)
- Radar Systems


Applications - High Energy Physics

- Klystron Conditioning & Test
- International Linear Collider
- Sandia/UCF Lithography

NLC 500 kV, 500 A Modulator

Applications - Food Sterilization

- **Ohio State University** Consortium
 - Tetrapak, Kraft, Ameriqual, US Army, others
 - PEF process is promising nonthermal technology
- **Bulk food sterilization** (Surebeam)

OSU 65kV bipolar pulser

Applications - Medical / Industrial Accelerators

- Solid State Modulator Upgrades
 - Replace Vacuum Switch Tubes
 - Extend Life
 - Much Higher Reliability
 - Flexibility
- Oncology Treatment
- Irradiation of Food / Mail
- High Power X-Ray Inspection Systems

15 kV, 2500 A Solid State Switch

Applications - PSII

- Plasma Source Ion **Implantation** (PSII)
- DTI Switches Power a Run of 1000 GM Pistons at LANL

Applications - Radar

- Transmitter Upgrades
 - AN/SPG-60 Fire Control Radar
 - Haystack Deep View Radar (DVR)
 - AN/SPS-49 Radar
 - MIR Phased Array
 - Cobra Judy X-Band
 - Gray Star
 - AN/SPQ-9A
 - Sondrestrom Ionospheric Radar
 - W-Band Warloc Transmitter
- **Replace Obsolescent Components**
- **Increase Reliability & Performance**

AN/SPG-60 **Transmitter Upgrade**

Gray Star / Cobra Judy

- High Power Data Collection Radars
- Ship Based S & X Band Radars
 - Cobra Judy: 16-TWT S-Band Phased Array (CJ-S);
 2-TWT X-Band Dish (CJ-X)
 - Gray Star: S and X-Band
 Transmitters Drive a Single
 Dish Antenna

USNS Observation Island (top), and USNS Invincible

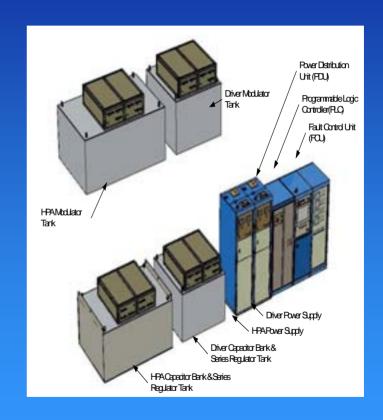
CJ-X Transmitter Subsystems

RF Head Modulator

Capacitor Bank

Power Distribution Unit Transmitter Control & Interface Unit

Solenoid Supply Rack (Current Monitor & Power Supplies)


HVPSs & Combiner

Mod Anode PS Fault Logic Control

Haystack Upgrade (Deep View Radar)

- **W-Band (94 GHz) Gyroklystron Transmitter**
- **DTI Awarded Transmitter Construction Contract 7/04**
- **Supports Two HPAs Plus** Driver
- **Installation 12/05**
- **Expandable to 16 HPAs**

Experience Counts!

- DTI is the World Leader in HV Solid State Pulsed Power
- DTI has patented solid state switch technology, over 15 years of experience, and hundreds of installed systems
- DTI has been developing advanced modulators for next generation collider applications for >six years
 - hybrid: 90 kV, 5 kA switch w/ 6:1 pulse transformer for 2 NLC klystrons (delivered to SLAC for klystron testing)
 - hard switch: 500 kV direct hard switch (studied)
 - Marx switch: 500 kV 500 A Marx modulator (in progress)
 - pulse-line cable: for NLC grid pulsed SBK (terminated for ILC)

Challenges for ILC High Voltage Modulators

ILC klystrons

- Design TBD Assumed Similar to Tesla Klystrons
- -110 150 kV, 120 166 A, $\pm 0.5\%$ flattop, 1.5 ms, 5 Hz (higher?)
- ~25 kJ Required Per Pulse
- Goal Low Life Cycle Costs
 - Minimal Acquisition Cost
 - Very High Reliability
 - Provide High level of klystron protection

Major ILC Challenge – Pulse Energy

- 1.5 MJ Capacitors Required to Meet Flattop **Requirements Directly**
 - Capacitor Cost Overwhelms Switch Costs, Dominates **Acquisition Costs**
 - Very Large Modulator Footprint
 - Very High Stored Energy Levels
- Optimal Energy Storage Assessed at ~ 100 kJ
 - Balances Switch and Capacitor Costs
 - Achieves Minimal Total Cost
 - Lower Capacitance Requires More Compensation Electronics
 - **Higher Capacitance Increases Capacitor Costs**

Major ILC Challenge – Long Cable?

- Depending on tunnel architecture chosen, long cables may be needed between modulator and klystron
 - adds to arc energy deposited in klystron
 - requires additional matching efforts to drive cable without ringing

DTI redirected from NLC to ILC fall '04

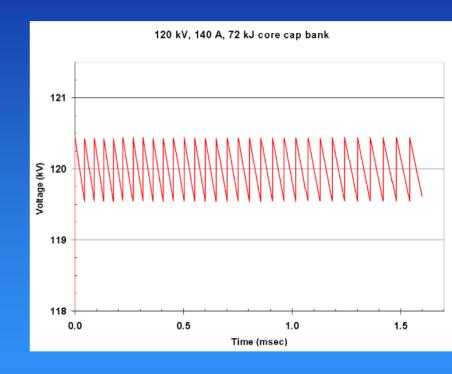
- In Fall '04, DOE requested that we evaluate options for redirection of existing NLC relevant SBIR contracts for ILC relevance.
- We performed preliminary modeling of many topologies for ILC:
 - hybrid (ss switch w/ pulse xf)

- -- hard switch
- PFN -- Marx
- multi-phase array of series boost regulators
- stored energy reduction: bouncers, linear regulators, switching regulators
- SBK cable work redirected to hard switch / bouncer
- New phase 1 proposed (Dec 04) for Marx switch

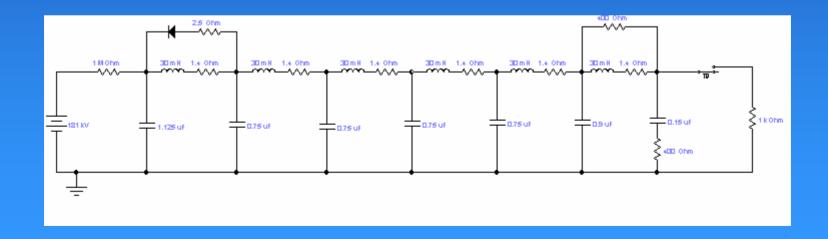
Transformerless Modulators

- FermiLab / DESY Have Demonstrated Pulse **Transformer Design**
 - Large Transformer Required (V-S Rating)
 - Transformer Losses
 - Stored Energy Downstream of Switch
- Two Transformerless Designs Identified
 - Solid State Marx Bank
 - Hard Switch

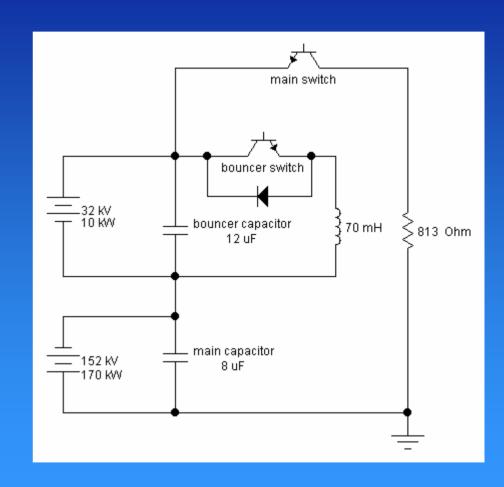
Droop Compensation Possibilities


- L charged C (chosen; quickest to build)
- Marx Bank (chosen; may be cheapest)

- Pulse forming line (sensitive to component tolerances)
- Passive L R (too much capacitance)
- Charged C L C (too much capacitance)
- **Boost (high switched currents)**


Marx Has Low Stored Energy

- + Only 65 kJ stored
- + Only one power supply
- - ~30 switches individually controlled for trimming
- Submitted as 2005 Phase I SBIR proposal


PFN Simple, But Sensitive to Tolerances

- + Single switch
- + Low stored energy
- 10% variation in one capacitor puts flatness out of spec

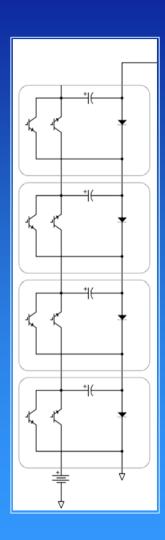
Selected LC Bouncer

- 8 μF at 152 kV; 12 μF at 32 kV
- 99 kJ stored, 15 x 6.6-kJ caps
- Two switches, power supplies
- Large inductor
- + Insensitive to tolerances
- + No transformer
- + Low risk

IGBT Packaging Makes Smaller System

- Use single-die 4500-V IGBT instead of dual 1700-V IGBT module
- 5x reduction in switch volume (higher voltage, smaller size)
- Developed under DOE SBIR

Solid State Marx Bank


- **Demonstrated by DTI, SLAC*, others**
- **Allows Pulsewidth Control (Switches Can Open Under Load**)
- **Capacitors Do Not Fully Discharge Each** Pulse – No PFN Required In Each Stage
- Stage Voltage is Critical Parameter
 - Low Voltage Stages Many Required, High **Charging Currents**
 - High Voltage Stages Fewer Required, Low **Charging Currents**

Collaboration w/ Anatoly Krasnykh, SLAC

Marx Charging Alternatives

- **Resistor Chain**
 - Simplest
 - High Losses
- **Diode-Inductor Network**
 - Limited to Low Duty, Short Pulses
- **Common Mode Choke**
 - Selected For NLC Marx (1.5 μs Pulses)
 - Limited To Short Pulses
- Charging Switch (Selected)
 - Higher Cost (2 Switches Per Module)
 - Supports Long Pulses

What is the Best Module Size?

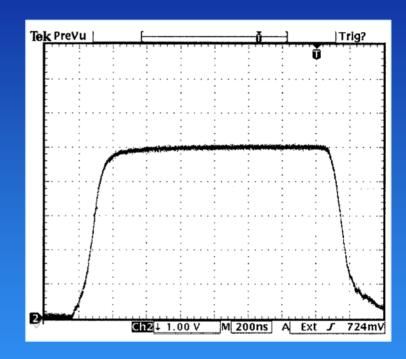
•	Small	ler ([1	3 k\	/ mod	lule)
---	-------	-------	----	------	-------	-------

Single IGBT, directly coupled gate drive	good
Fine Voltage Control Over Flattop	good
Large Infrastructure (drive, control, power circuits)	

Larger (~10 kV module)

Recharge supply high current

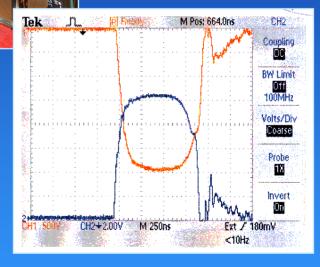
- Series IGBT, needs high side drives good Fewer modules needed (about 15) good Recharge supply low current
- **Optimal Combination of Both Types of Modules**
 - Few, High Voltage Modules For Main Pulse Voltage
 - Many, Low Voltage Modules For Droop Correction



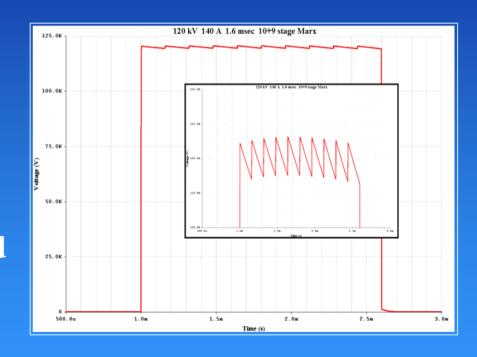
Prototype Marx Bank – 13 kV modules

Risetime

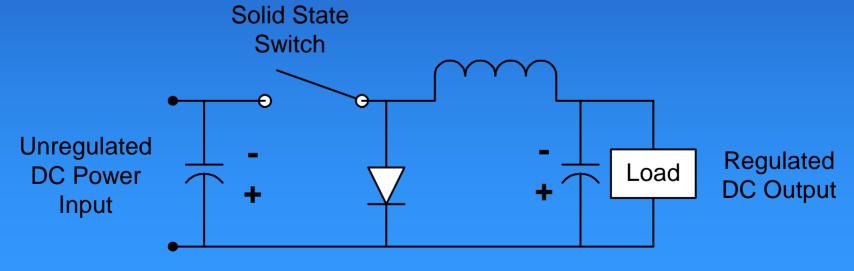
- 150-200 ns (10-90%)
- 250-300 ns (0-97%)


10 kV precharge, 120 Ω load...plot @ 80 A/div

Prototype Marx Bank – 2.5 kV modules


- ~300 ns (0-97%)
- ~100-150 ns (10-90%)

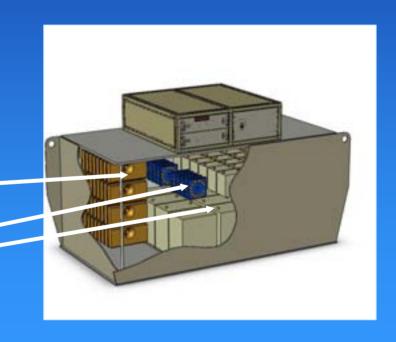
1.6 kV pre-charge, 100 Ω load...red @ 1 kV/div, blue @ 14 A/div


Reduced Capacitor Size - Staggered Switching

- All High Voltage (7.5 kV)
 Modules Turned On at Beginning of Pulse
- Low Voltage (1 kV)
 Modules Turned On in
 Staggered Timing To
 Compensate for Droop
- <0.5% Flattop Maintained

Marx Bank Power Supply

- 7.5 kV Modules Powered By Buck Regulator From Unregulated 13.8 kVAC Feeds
- 1 kV Modules Powered By Individual Supplies
- Simple, Highly Efficient Design
- Most economical supply per watt (for this regime)
- Charging Rate Controlled to Prevent Flicker



Marx Bank Summary

- # Core Modules 16
- Core Module Voltage 7.5 kV nominal, 9.0 kV max, 10.5 kV rating
- Core Capacitor 110 µF (6 kJ) each
- # Corrector Modules~ 30
- Corrector Module Voltage 900 V nominal, 2.0 kV max
- Phase 1 proposed Dec 04, on contract next week?

ILC Marx Layout

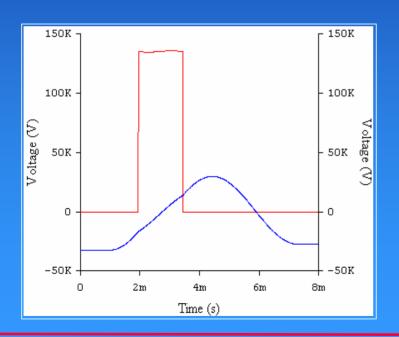
- Standard DTI HV Design
 - HV Systems In Oil Tank
 - Controls In "Doghouse" On Lid
 - Entire Assembly Lifts From Tank
- High Voltage Switches
- Low Voltage Switches-
- **Capacitors**

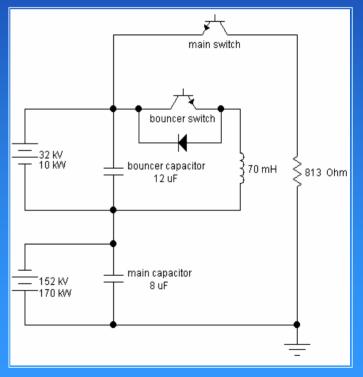
ILC Hard Switch

- 150 kV, 150 A is COTS technology for a DTI hard switch
- **Program has three goals:**
 - reduce cost, demonstrate robust operation of minimized switch
 - aggressively reduce stored energy with large bouncer correction
 - deliver fast-track full specification modulator to ILC community for evaluation and to assist klystron development
- Retasking of existing SBIRs approved this summer, work is in progress.

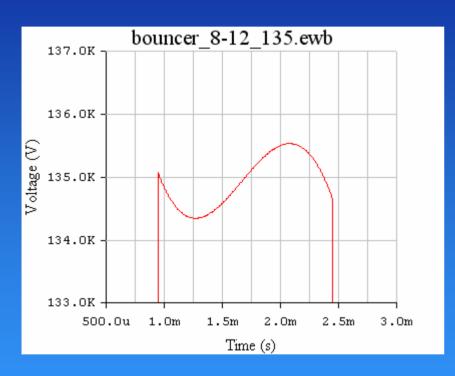
ILC Hard Switch

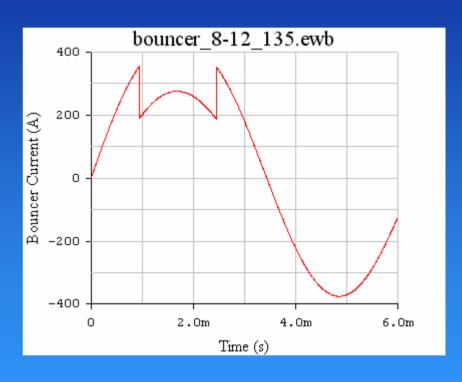
- Solid State Hard Switch
- Up to 200 kV, 5,000 A
 - Series IGBT Switch
 - Opens Under Load (< 1 μs) For Arc Protection
- ILC Requirements Well Within Commercial Capabilities


150 kV, 500 A Solid State Switch Installed In Sondestrom AB Greenland

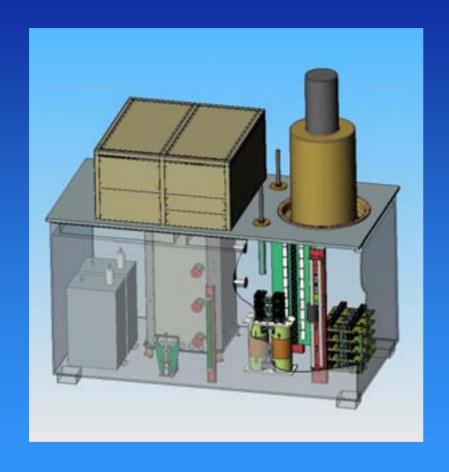

Droop Control

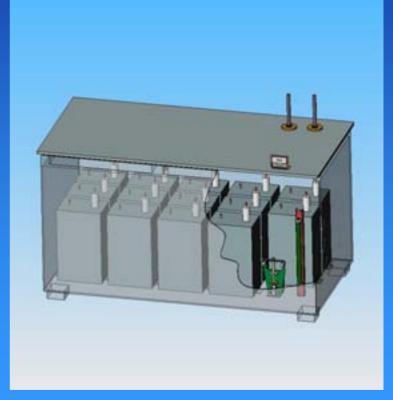
 100 kJ Stored Energy Gives ~ 12 **kV Droop** (10%)


Bouncer Circuit Selected For


Compensation

Circuit Simulation Shows Flatness





output voltage

bouncer current

Two 4'x8' tanks (switches, caps)

Summary

- Two Transformerless ILC Modulators In **Development at DTI**
 - Both Require ~100 kJ of Capacitance
 - Similar Acquisition Costs For Both Switches, but Marx optimized to minimize cost of power supply
- Marx Bank
 - Uses Staggered Switching To Achieve Flattop
 - Buck Regulator Power Supply From 13.8 kV
- Hard Switch
 - Uses a Solid State Bouncer
 - Commercial Switching Power Supply (480 V)
- Both Designs Planned To Be Demonstrated At **Full Power Under DOE SBIR Efforts**

Thank You

Diversified Technologies, Inc.
35 Wiggins Avenue
Bedford, MA 01730
(781)-275-9444
www.divtecs.com