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Motivation

• Understanding of the performance of tuning, correction and feedback as-
suming realistic condictions remains one of the important R&D topics

• Integrated simulations are essential to understand matching of different
time scales

- e.g.: If one optimises a tuning knob, how long does it take to get
a realiable luminosity measurement given the beam delivery system
feedbacks?

- How do the different feedback systems interact?

- Which bandwidth is available for each feedback system/correction and
tuning procedure

• The correlations of the particle distribution introduced in one sub-system
can be important for other sub-systems (e.g. banana effect)



• Different diagnostics can be used to asses beam parameters

- this can be affected by correlations/need to understand the time scales



Example: Banana Effect

-

• Due to high disruption Dy emit-
tance growth is not a good mea-
sure for luminosity any more

• The correlation within the beam
matters

• High disruption unavoidable
since L ∝ Dy/σzPbeam

• Effective disruption parameter
can be even higher since each
slice of the beam may be smaller
than the beam projection
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Solution for Static Case

• Simulations were performed for
TESLA, for ILC disruption is
lower

• Luminosity can be optimised by
scanning offset and angle

• Should be even possible within
a single pulse

⇒ Certainly more complicated
than feedback with BPM

⇒ For dynamic case full simulation
is required

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

20 22 24 26 28 30

L 
[1

034
cm

-2
s-1

]

εy [nm]

initial
offset opt.

+angle opt.
approx.



Ground Motion

• Studies are based on TRC ground motion models (from A. Seryi)

- B: medium stable stable

- C: noisy site

• Model takes into account the correlation of the ground motion

• For the study, the motion during the pulse duration is neglected



Simulation Procedure

• All simulations were performed with PLACET (beam transport) and GUINEA-
PIG (beam-beam effects)

• Only beam delivery systems are included (thanks to M. Woodley)

• Consistent ground motion is taken for electrons and positrons

• Simple feedback algorithm used

• Beam-beam feedback based on BPM after collision point

• Orbit feedback based on BPMs and dipole correctors in beam delivery
system

• Simulations performed using seperated tracking/correction modules



Previous Results for TESLA

• Luminosity loss in percent for noise
ground (model C)

• Simplified feedback model

- all elements creep back to their ini-
tial position

⇒ significant luminosity loss with no lu-
minosity optimisation

⇒ pulse-to-pulse feedback can help signif-
icantly

correction applied slow feedback gain
0.01 0.02 0.04 0.1

No feedb. 73 71 67 56
offset correction 36 33 29 26

+angle correction. 22 19 16 15
offset optimisation 15.1 11.7 9.3 7.8

+angle optimisation 10.4 7.3 5.7 4.6



ILC Results with no Feedback (A. Latina)

Simulation when no feedbacks are active for the models B and C
• Perfect alignment at

t=0

- L0 '1.40·1034

cm2s−1

• After 60 seconds:

⇒ B: L ' 50% L0

⇒ C: L ' 30% L0
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Short Time Scale

• Perfect alignment at
t=0

• 3 seconds after:

⇒ B: L(t=3) ' 80% L0

⇒ C: L(t=3) ' 50% L0
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Feedbacks Schema

• pulse-to-pulse orbit feedback:

- orbit correction based on BPM readings and dipole correctors

- 14 correcting dipoles

- 136 BPMs

• intra-pulse feedback:

- Beam-Beam correction based on BPM after collision point

- Luminosity optimization based on offset scan or direct maximization
(bracketing method)



Intra-Pulse Optimization with Pulse-to-Pulse Orbit FB (B)
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⇒ Intra-pulse optimization
helps significantly

⇒ The efficiency of the pulse-
to-pulse
orbit feedback has to be
studied



Intra-Pulse Optimization with Pulse-to-Pulse Orbit FB (C)
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- Intra-pulse BB works fine

- Intra-pulse optimization
has to be analyzed

⇒ Like in the model B, p-to-p
orbit feedback alone seems
not to produce good results



Intra-Pulse Optimization without Pulse-to-Pulse FB (B)

Optimization with / without p-to-p orbit feedback.

- P-to-p orbit feedback recovers
≈1% of the luminosity

⇒ Pulse-to-pulse feedback helps
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Intra-Pulse Optimization without Pulse-to-Pulse FB (C)

Optimization with / without p-to-p orbit feedback

- P-to-p orbit feedback helps to
recover ≈5-8% of luminosity

⇒ Pulse-to-pulse feedback helps
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Comparison between P-to-P and IP feedbacks, for model C

• First 6 seconds, p-to-p
orbit feedback alone

• Intrapulse feedback is
switched on at the 6th
second.

• Luminosity optimisation
is best
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In progress: Feedback System Based on the Kalman Filter

• Use of the digital control theory formalism for feedback systems

• Kalman Filter:

- estimates the state of the system from a vector of measurements

- applies a gain matrix to determine the corrections for the predicted
state vector

- keeps into account the noise in the measurements and in the state
vector

- minimizes the rms of the state vector (e.g. position of the beam)



Kalman Filter vs. Matrix Optimization
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In progress: Extended Kalman Filter + Neural Networks

• Limit of the KF: estimates the state of processes governed by a linear
difference equation

⇒ The response function for ILC is not linear

• Possible solution: Extended Kalman Filter + Neural Networks:

• EKF:

- like the KF, but linearizes, around the current state, any non-linear
function that models the system

• NN:

- provides to EKF the non-linear response function of the system,

- dynamically improves its model of the system itself, as the network
learns about it during its functioning.



Emittance and Luminosity Tuning

• Use of main linac emittance tuning bumps predicts very good performance
for CLIC

- in CLIC wakefields dominate, in ILC dispersion

• New bumps with measurement point at the end of the linac or the IP give
even better performance

• Luminosity tuning bumps optimise the value that is really relevant

• Emittance tuning allows to separate the two linacs

• Luminosity simulating laser wires can be considered

• General trade-off will be between using most relevant value against being
able to identify position a the problem

• Need different procedures during commisioning



Laser Wire Based Bumps

• Consider using luminosity emulating bumps

- fixed laser spot

- matched to target beam size

- no need to scan but just optimise luminosity

• Just maximise the number of scttered photons

• Beam needs to be aligned to laser spot by a scan, but does not need to
be repeated for each measurement

• For each degree of freedom, number of converted photons measured at
five settings

• The optimum is determined by a fit

• The procedure cycles through the degrees of freedom



Results

• Main linac (from TRC) is simulated using all misalignments and full beam-
based alignment procedures

⇒ Emittance grwoth is too large

• Use one dispersion bump before, one after linac

⇒ four degrees of freedom
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Probability Distribution

• For different random number
generator seeds results vary

⇒ are interested in probability
distribution

• After application of bumps no
machine has more than ∆εy ≥

20 nm

• But more realistic bumps should
be tried
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Further Results on Bumps

• Relative positions of laser and a
feedback BPM needs to be de-
termined

⇒ Simulations for CLIC showed
that the position measurement
needs to be updated only after
optimisation of a few knobs

• Error in laser spot size might be
a problem

⇒ still the optimum beam-
laser luminosity corresponds
to optimum conditions
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Beam Parameter Tuning at IP

• Determination of beam parameters from IP measurements seems quite
difficult if more than one parameter needs to be determined

⇒ use tuning knobs which only affect one parameter at a time

• Many different signals exist

• Best is luminosity (e.g. low angle Bhabhas), but needs some time

• Good signal are incoherent pairs

• Potentially good are radiative Bhabhas (depends on geometry)

• Beamstrahlung is also available



Luminosity Tuning

• Simulation for CLIC with wake-
field bumps

⇒ will perform them for ILC

• Tuning yields excellent perfor-
mance

• Luminosity used

⇒ will need to use realistic sig-
nal



Use of Beamstrahlung
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• Depending onknob maxmise/minimise sum/difference of beamstrahlung
from both beams



Resolution
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• Luminosity resolution is about as good as beamstrahlung energy resolution
⇒ but beware of systematics



Parameter Dependence

• In most cases an error
in one parameter does
not affect the optimisa-
tion of another one

• Problems with (∆x′,
Wx) (Wy, ∆x′) (R23,
∆x′) (R23, Dy′) (R23)

• Needs to be completely
studied

• Full optimisation is be-
ing tested right now



Plans

• Implementation of full lattice when available

• Implementation of fast tracking between bunch compressor and beam
delivery system

- particle tracking is available

• Improved feedback models

• Full study of IP parameter tuning procedure

• Realistic noise during tuning/correction

• Realistic multi-bunch studies



Conclusion

• Still important integrated studies need to be carried out

• Luminosity and emittance bumps seem to be very efficient

• Intra-pulse feedback is vital

⇒ need to understand bunch-to-bunch variations

• Multi-bunch studies

• We are geared up to participate in these studies

• Main areas seem to be currently:

- feedback simulations

- beam tuning studies

- aligment studies


