Going round the bend

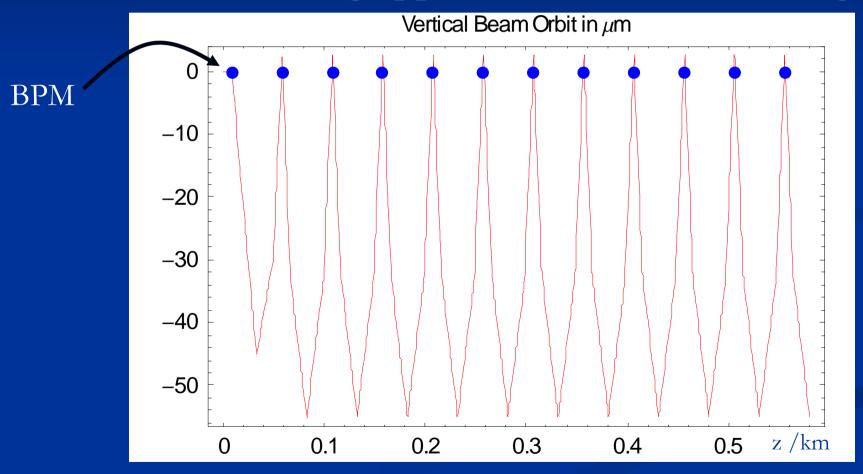
2nd ILC Workshop Snowmass August 16, 2005

The Possibilities

- Laser-straight
 - The canonically studied (simulated) scenario
 - Clearly leads to a relative deep tunnel (IR) \$\$
- Earth curvature following
 - Actually iso-gravitational potential following
 - Possibly the cheapest solution
 - Proposed for the TESLA TDR (DESY site)
- All options in between
 - Straight segmented options (→ PT's talk)

Extremes

What have I simulated?


- A simple linac lattice which follows the curvature of the earth (r = 6000 km)
- Curvature implemented by having a 2.7μrad vertical 'kink' between cryomodules.
- Vertical dipole corrector windings on quadrupoles used to follow geometry
 - 2.7 μrad corresponds to ~450 μm systematic offset of the quadrupoles
- Impact on DFS performance studied
 - Comparison of same machine with and without Earth curvature following

Chosen Linac Lattice

- Very simple lattice taken from TESLA TDR
- 60° FODO
- $\beta_{\text{max}} = 172 \text{ m constant beta lattice}$
- 6 cryomodules / fodo cell (cell length = 99.5m)
- 12 cavity cryomodule
- 1 TeV machine studied
 - 35 MV/m gradient ($\phi_{RF} = 4.4^{\circ}$)
 - 385 quadrupoles

Steering the Earth

One-to-one steering applied to zero BPM readings

Random Errors Studied

RMS Errors (normally distributed):

quad offsets: 300 μm

quad rolls 300 μrad

cavity offsets: 300 μm

cavity tilts: 300 μrad

BPM offsets: 200 μm

■ BPM resolution: 5 µm??

■ CM offsets: 200 µm

- TDR long. wakefield; trans. WF taken from Zagorodnov and Weiland, PAC2003.
- Initial uncorrelated energy spread taken as 2.8%

Same 1000 seeds used for laser-straight and curved geometries

wrt CM axis

Canonical DFS reviewed

$$\chi^2 = rac{\Delta \mathbf{y}(\delta) \cdot \Delta \mathbf{y}(\delta)}{\sigma_{res}^2} + rac{\mathbf{y} \cdot \mathbf{y}}{\sigma_{BPM}^2}$$

$$\Delta \mathbf{y}(\delta) = \mathbf{y}(\delta) - \mathbf{y}(0)$$

measured energy difference orbit

$$\mathbf{y} = \mathbf{y}(0)$$

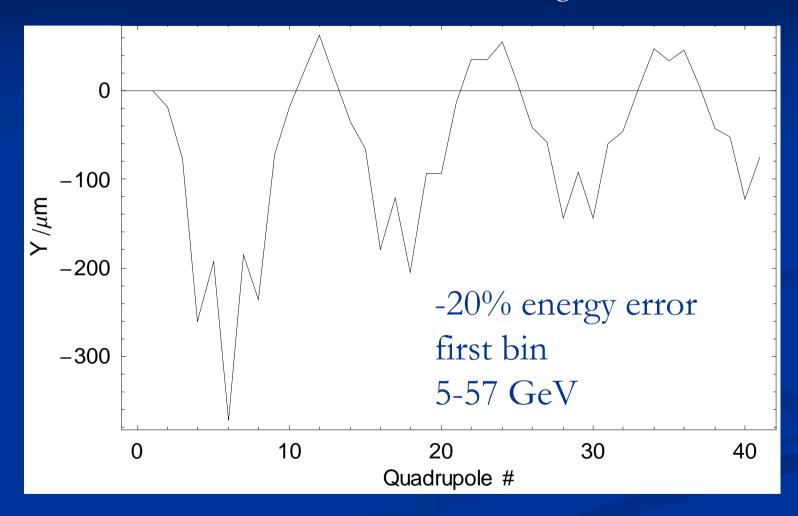
Absolute measured orbit

The General Case

■ DFS (dispersion *free* steering) is the special case that has been studied:

$$\Delta \mathbf{y}(\delta) = 0$$

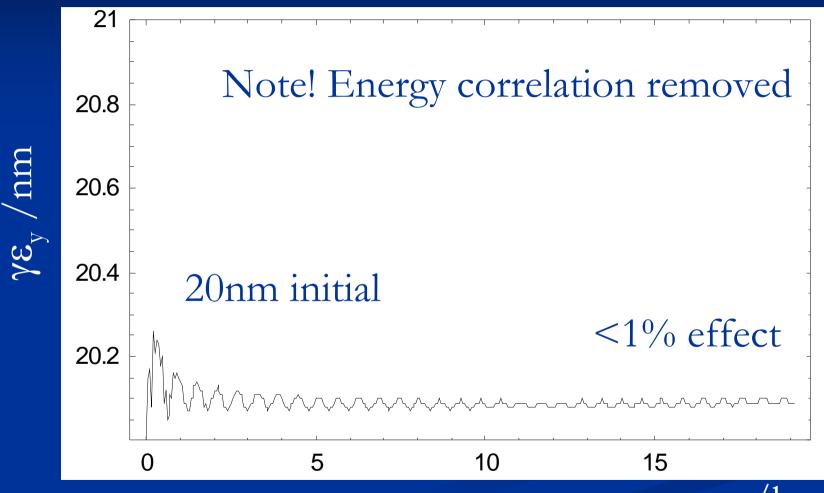
DS is the more general case, where we have finite dispersion:


$$\Delta \mathbf{y}(\delta) = \Delta \mathbf{y}_{design}(\delta)$$

General DS

$$\chi^2 = rac{\Delta \mathbf{y}(\delta) \cdot \Delta \mathbf{y}(\delta)}{\sigma_{res}^2} + rac{\mathbf{y} \cdot \mathbf{y}}{\sigma_{BPM}^2}$$

$$\Delta \mathbf{y}(\delta) = \mathbf{y}(\delta) - \mathbf{y}(0) - \Delta \mathbf{y}_{design}(\delta)$$
$$\mathbf{y} = \mathbf{y}(0)$$


Example of $\Delta y_{design}(\delta)$

The Design Machine

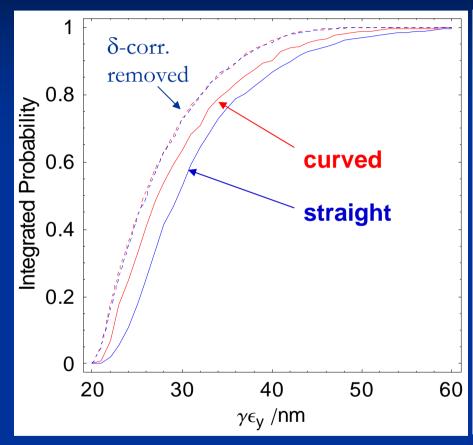
- Radius of curvature is very large
 - $r \approx 6 \times 10^6 \text{ m}$
- However, still enough to generate non-negligible vertical dispersion
- hence we need to *match* the dispersion to prevent emittance growth due to filamentation
- For model $\beta = 172 \text{m } 60^{\circ} \text{ lattice} \Rightarrow \sim 1.1 \text{ mm}$
 - at 5 GeV ($\delta_{\rm RMS} = 2.8\%$) $\gamma (\eta_y \delta_{RMS})^2 / \beta \approx 54 \, {\rm nm}$
 - at 500 GeV ($\delta_{\text{RMS}} = 0.05\%$) $\gamma (\eta_y \delta_{RMS})^2 / \beta \approx 0.54 \text{nm}$

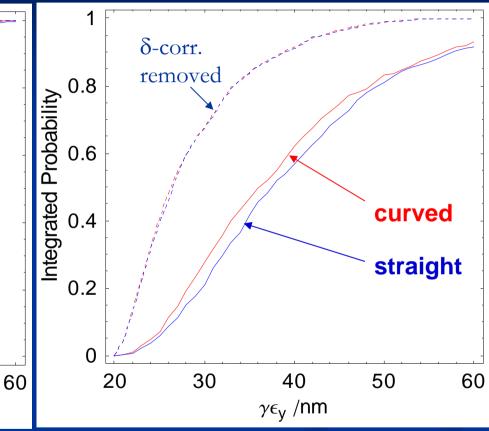
Design Emittance Growth

z/km

Simulation of BBA (DFS)

- Disclaimer: not the purpose of this study is not to evaluate the performance of DFS, but to try to quantify impact of linac geometry
 - same approximate DFS algorithm applied to both cases.
- Several approximations (cheats!) used in computer model
 - ease of implementation
 - speed (1000 seeds simulated)
- Full Blown simulations still required (for completeness)

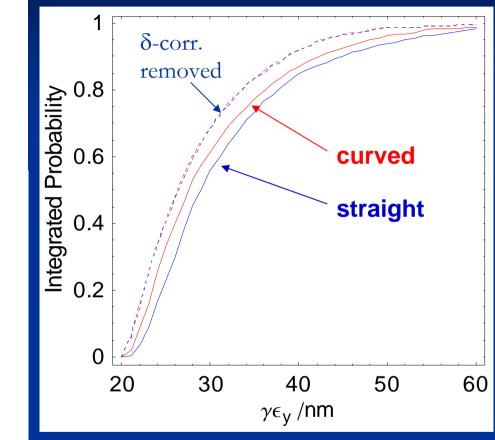

DFS simulated

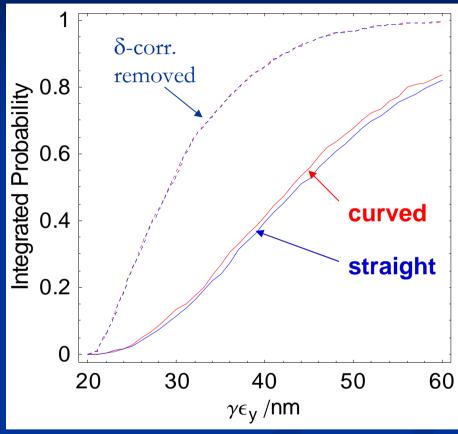

- Sections of 40 quads (20 cells) BBA'd at a time
- Sections overlap by 20 quads
- Energy difference simply made by changing the initial beam energy
 - in 'real' life, would adjust linac amplitude / phase
 - impact of tilted cavities

DFS simulated

- No jitter: assume launch conditions for each section are maintained (including for off-energy)
 - Would be achieved by feedback / steering or by fitting (BPM res. critical)
- Two energy difference scenarios studied
 - fixed -20% error
 - fixed -1 GeV error (-20% of 5GeV)

Results 250 GeV (1000 seeds)





fixed -20%

fixed -1 GeV

Results 500 GeV (1000 seeds)

fixed -20%

fixed -1 GeV

Summary (1000 seeds)

Note: energy correlation removed

250 GeV

500 GeV

ΔΕ	% ≤30 nm	90%
-20%	73%	36 nm
-1 GeV	68%	39 nm

ΔΕ	% ≤30 nm	90%
-20%	67%	39 nm
-1 GeV	54%	42 nm

no difference between straight and curved geometry

Remaining Questions

- Will the stated approximations (cheats) in the simulation impact the difference between straight and curved geometry?
 - Making simulation more 'realistic' will impact results
 - I don't (currently) see why one geometry will become more worse than the other
 - one potential exception: changing the energy
- More sophisticated (realistic) simulations to follow
- Understanding fundamental problems/limits with DFS probably more critical

Summary

- Simple constant- β linac studied at 35MV/m
 - 250 GeV and 500 GeV machines simulated
- Curved geometry implemented as implied in the TDR
 - 2.6μrad kinks between cryomodules; simple use of quad corrector dipoles to steer beam.
- standard set of errors applied to 1000 machines
 - same error seeds used for straight and curved geometries
- Within limits of approximations used, no significant impact seen of curved geometry on emittance performance
 - there maybe other good reasons to have a straight machine, but linac beam dynamics does not seem to be one of them ©