
Code Fest (not Wars!)

Paul Lebrun
FNAL

Outline

• Goal/motivation for discussing codes.
• Thoughts..
• Specifics brief studies, suggested by PT

(and others)
– LIAR/Lucretia: From MatLab to Octave

(increase availability..)
– Towards XML-based decks..

• Other such topics could/should be
discussed…

Goal in bringing the subject.

• A lot (well.. some) of man-power is
available, out there, we should try to
optimize it…
– Newcomers (young or old) to the ILC do not

want necessarily to start from scratch
– They are pragmatic: they go and ask “next

door” for some code, and go from there.
– Next door can be thousands of miles away..

But in many case, it is actually close enough,
such collaborations can and do work.

A simple question..
• What can we simulate, with the

required accuracy?
– Some problems are non-trivial, beyond our reach, if high

accuracy is required : example: in geophysics, earth magnetic
field vs time, Tevatron beam lifetime, with a relative accuracy of
~ 100%, 200%...at best

– Not a competency issue: tough problems..
• For ILC, LET sounds easier than….

– Collective effects in DR
– Halo and backgrounds at I.P. ?

• Except: Full dynamical simulation of LET with beam line
defects, GM, beam & mechanical jitter and controls
problems, including possible halo propagation.

Scope and Schedule for difficult
such problems

• Perhaps results from such simulations will never
be required by review committees (it was not
quite requested for LHC, perhaps I am wrong).

• Not right away at least….we have some time.
• Yet, from now on, the pressure to certify existing

designs will keep rising, leaving little time to
develop the necessary infrastructure for such
difficult problems.

• Now is probably not a bad time to start scoping
and thinking..

What do we want to “integrate”?
design/simulation vs code.

• While the first is a must, the second is
debatable…
– Simple format or “marked-up language based” decks

can describe the machine..
– Beam files also relatively straightforward to move

from one package to an other (unlike HEP data
structure)

• Scale matters: if the amount of time spend to
“integrate” becomes substantial and this has to
be done slightly differently for each
code/problem, by each participants,
independently, it will become a substantial cost.

Multiple Codes:

• Allows for verification!
– Done in the past, successfully, albeit on

problem relatively straight-forwards, not
necessarily on the problems we need to
solve.

• Different computational techniques must
be applied to solve different problems.
– Macro particles vs slices, vs simple ray

tracing, vs Lie Algebra based beam transport.

Compromise on the number of
codes.

• “Supported and certified” : only a few…
– Such that we move forward on more and

more complicate problems..
• Private: more than a few.

– Such that we can explore new techniques..

Enough generalities, specifics..

• Home work suggested by PT: Matlab vs
Octave.
– Use of MatLab: Motivation:

• Cost and ease of installation (i.e., obtaining the
right of use in a pragmatic sense)

• Not sure how we can use Matlab based on farms,
although it has been done at Daresbury (?)

– Suggestion:
• replace with Octave: free-ware.
• Negotiate with MathWorks (in the works.. But got

no feedback recently…)

MatLab -> Octave in Lucretia
• Only brief (very brief) study, in collaboration with

Jim Amundsen (FNAL)
– Matlab scripts are not the problem, they will probably

port easily, with minor modifications.
– The trouble comes with the C (or Fortran) API to

MatLab: memory in some (how many?) cases is
manage by Matlab, data flows to and from C/Fortran
<-> Matlab. Octave has only a C++ interface…

• Write a C++ interface.. Lucretia C/C++ <-> Octave.
– Informal Estimate (J.A. !!!) ~ one month full time
– Maintenance cost not included.

• Rewrite the C part of Lucretia in C++.
– Also significant.

XML-Based Decks ???

• Proposed at PAC05.. Or even earlier.
• Goals:

– No longer have to maintain antiquated MAD
parsers.

– Supports a much richer and accurate
description of a machine than currently
allowed by MAD(8,9, x..)

But…

• Most, if not all, the XML parsers are
written for OO based packages (as
opposed to procedural methods).

• Parsing is not the problem, managing and
interface to old precepts will be difficult
and disruptive..

• Unless the code is already OO (eg., Merlin
??..) Try this first where it is easier..
Pending..

Other topics..

• ???

	Code Fest (not Wars!)
	Outline
	Goal in bringing the subject.
	A simple question..
	Scope and Schedule for difficult such problems
	What do we want to “integrate”? design/simulation vs code.
	Multiple Codes:
	Compromise on the number of codes.
	Enough generalities, specifics..
	MatLab -> Octave in Lucretia
	XML-Based Decks ???
	But…
	Other topics..

