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HIGHER BAND LRWEFS SIMULATIONS,
BEAM DYNAMICS
AND PLANS FOR FURTHER WORK

Overview

Review of emittance dilution due to ~ first 3 bands.

Influence of higher dipole bands on emittance dilution.

3. Plans for the future -methods and applications to new proposed cavity
shapes

e =

Roger M. Jones, SLAC (ALCPG & ILC Workshop, Snowmass, Colorado, November 22, 2005)



€9 1. EMMITANCE DILUTION DUE FIRST TWO
BANDS OF DIPOLE LONG-RANGE WAKES

Modal expansive of wake seen by beam

N :
_ I,S/Ca—m,5/2Q,,C
traversing ~ 20,000 cavities: W(s)=2Re nE:lKne = ™ tU(s)

a kick factor K, =|[ E,(s)e’*'°ds /4U, (E,= axial E-field and U, =energy stored in mode n) and
a synchronous frequency ®,/2

Where N is the nnEnber of mO(’Ts, U(t) is the unit step function, the nth mode has a quality factor of Qn,
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Typical dlpole field in 9-cell TESLA-style cavity computed with HFSS
» Calculate Ks, kick factors and o /2rn, eigenfreqs for lower (~ 3 bands) with HFFS.
» Measure Qs for lower bands (‘cold’ measurement).
»Sum modes to obtain wakefield.
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International Linear Collider
at Stanford Linear Accelerator Center

Vertical PhaseDistribution

"l Emittance dilution at end of linac ~ 0 %

Normalized phase
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International Linear Collider

at Stanford Linear Accelerator Center
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RMS BEMS Misalignment { lim)
Frequency
Detuning (%) 100 500 1000
0 47.2+53.6 | 11R0£1339 | 472145357
0.01 020+0.01 | 5.12+2.77 | 20.47+11.08
0.05 0.17+0.08 | 4.20+£2.07 | 16.8048.29
0.1 017+ 10 | 4184253 | 16.71£10.12
0.2 018008 | 4.38+£2.02 | 17.51+8.08
0.3 0.18+0.09 | 4.55+£2.30 | 18.19+0.21]
0.5 0.19:0.10 | 4.68+£2.44 | 18.71+9.74
0.8 018010 | 4.58+£2.41 | 18.31+9.66
1.0 0.17+0.08 | 4.20+£2.00 | 16.79+8.01
3.0 0.18+0.09 | 4424232 | 17.66+9.29
5.0 0.19:0.08 | 4.67£2.11 | 18.66+8.44
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2. EMMITANCE DILUTION DUE HIGHER

BANDS OF DIPOLE LONG-RANGE WAKES
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HFSS Mesh for 9-Cell TESLA Cavity
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Solved Fregquency: GH= ¢~180

Representative set of HOMs are Illustrated
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International Linear Collider
at Stanford Linear Accelerator Center

Foraperiod system in general we have :
Ezar, Z E LeeiC N ExCr, zCEXpGi *C
EXr, z B LeelC N ExCr, zZCEXpCEI *,
|where Leenn N Period

Thus we use :

E,Cr, ZE LgeiCE EAT, Z B Leg/C

CosC*( N
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International Linear Collider

v at Stanford Linear Accelerator Center
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International Linear Collider

at Stanford Linear Accelerator Center
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International Linear Collider
at Stanford Linear Accelerator Center

Emittance down linac.
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International Linear Collider
at Stanford Linear Accelerator Center
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€90 3.R&D REQUIRED FOR NEW CAVITY DESIGNS

We need to be able to accurately and rapidly characterize the modes in these
cavities. To this end we will use:

1. Circuit modeling of cavities and superstructures.

2. Segmented or cascading of small sections.

R&D necessary (at different levels): Rong-Li Geng

Considerable R&D will be required and different check points:

Wake fields:

a) The allowed iris diameter must be specified from theoretical analysis. This is a trade
off between allowable emittance growth (luminosity) and cost.

b) Complete wake field analysis must be carried out computationally and checked with
measurements.

¢) Cold tests of wake fields must be carried out on two or more adjacent cavities.
d) Wake fields must be checked in modules with beam.
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International Linear Collider
at Stanford Linear Accelerator Center

Transverse \Wakefield Measurements

of a Pair of H60VG4 Structures
(HEOVG4SL17A,B)

gl
Three cells in the
THM modes couple to the beam . Both TX
and TE modes and excited and the coupling
to the manifild is via TE medes. The

manifold is modeled as a transmission line
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HOM coupler

FPC ]

| |
| HOM couplers

2x5 cavity superstructure indicating HOM
couplers and single FPC (Fundamental Power
Coupler) J. Sekutowicz et al PAC 2003

Circuit Model of Superstructures
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Cu model of 2x5 cavity superstructure.
J. Sekutowicz et al PAC 2003

» These types of structures are ideal candidates for circuit modeling and

cascading of segments of the accelerator.

»In cascading, the S-matrices of small sections are calculated accurately and
the overall scattering matrix is calculated by cascading them.

» This method allows a rapid determination of the wakefield and moreover,
allows errors (random and systematic) to be rapidly incorporated in the

simulations.
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14



69

Higher Order Dipole
Wakefield Bands Summary

*Minimal emittance dilution is expected to occur due to the higher order dipole
bands (a worst case machine had an emittance dilution of ~ 20% dilution in
these calculations).

eInfluence of higher order dipole bands on mode coupling also requires a
careful analysis.

*Applying circuit modeling and cascading of segments of the structure will
allow for a rapid determination of the wakefield.
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