CERN Contribution to Main Linac Studies

D. Schulte

A. Latina

P. Eliasson

- Main linac studies are based on TESLA TRC lattice
 - \Rightarrow will be updated when we agree on new lattice

Emittance as Performance Measure

- Banana effect could make emittance as measure for linac performance questionable
- Luminosity can be optimised by scanning offset and angle
- Certainly more complicated than feedback with BPM
- ⇒ Emittance seems good measure for static case
- \Rightarrow For dynamic integrated simulation is required

Misalignment Model

• TRC model

-
$$\sigma_{quad}=300\,\mu\mathrm{m}$$

-
$$\sigma_{cav} = 300 \,\mu\mathrm{m}$$

-
$$\sigma'_{cav} = 200 \,\mu \text{radian}$$

-
$$\sigma_{bpm} = 200 \, \mu \mathrm{m}$$

-
$$\sigma_{res} = 10 \, \mu \mathrm{m}$$

-
$$\sigma_{module} = 200 \, \mu \mathrm{m}$$

• LICAS based model

- is implemented
- needs further discussion

Need consistent model

 \Rightarrow WG2

Simulation Tools

- All simulations are performed with PLACET
- Two different options exist
 - efficient tracking and correction of static machine
 - ⇒ only dynamic error is beam jitter
 - full seperation of tracking and correction
 - ⇒ quite realistic modelling including all noise sources
 - ⇒ much slower than the other solution
 - ⇒ will be used more when full lattice design exists
- Efficient pseudo multi-particle tracking is in preparation
 - ⇒ no loss of information from bunch compressor to beam delivery system

Steering Methods

- One-to-one
 - does not meet the required performance
- Ballistic alignment
 - sensitive to remanent fields
- Quadrupole shunting method
- Dispersion free steering
 - can be implemented via changes of quadrupole strengths
 - or modification of beam energy
 - beam energy can potentially be modified within a pulse
 - ⇒ potentially removes most of pulse-to-pulse jitter effects
- Tuning bumps directly modify emittance or luminosity

Ballistic Alignment

- Beam line is devided into sectors in each of which
 - quadrupoles are switched off
 - beam steered into last BPM (could use mean of all BPMs)
 - BPMs are aligned to beam
 - quadrupoles are switched on and one-to-one correction is performed
- Resulting emittance growth is about $10 \, \mathrm{nm}$ for $\sigma_{res} = 5 \, \mu \mathrm{m}$
- External fields matter
 - could be dealt with by using different energy beams
 - using more than one BPM to define ballistic line will help
- ullet Requires switching of quadrupoles \Rightarrow slow since low repetition frequency

Quadrupole Shunting Method

- Align BPM to quadrupole
- Perform optimisation of beam trajectory
- Preliminary simulations show $\Delta \epsilon_y \approx 15\,\mathrm{nm}$

Dispersion Free Steering

$$\chi^2 = w_1 \sum_{i=1}^n b_{0,i}^2 + \sum_{j=1}^m \sum (b_{j,i} - b_{0,i})^2 + w_2 \sum_{i=1}^n d_i^2$$

 $b_{j,i}$: Offset of beam j in BPM i (i=0 nominal beam) d_i strength of corrector i

- Three different beams are used
 - with 20% less than nominal energy
 - with 10% less than nominal energy
 - nominal beam
- The difference between each of the first two beams and the nominal is minimised together with the offset of the nominal beam
- Varying the gradient is easy, varying the initial energy is not easy

Correction with Different Gradients

- Only different gradients are used
 - ⇒ can be easily implemented in reality
 - ⇒ can potentially be done in single pulse
- Full TRC misalignment model
- BPM resolutions $\sigma_{res} = 10, 5, 2, 1 \, \mu \mathrm{m}$ simulated
- Beam position and angle are fit at start of each bin
- ullet Weights w_1 and w_2 for orbit and corrector strengths are scaned
 - assumed constant value along the linac, could be optimised

Results

 \Rightarrow Target of less than $20\,\mathrm{nm}$ cannot be reached even for average

Better BPM Resolution

100

80

- The BPM resolution acts on beam
 - incorrect reconstruction of beam position locally
 - wrong reconstruction of incoming beam offset and angle
- Reconstruction of incoming beam is only necessary if jitter is too large
- One can assume that the error of reconstructing incoming beam is the same as BPM resolution

- Best w_1 , w_2 for each case
- \Rightarrow The impact of the BPM resolution is not very large

Origin of Emittance Growth

- Best w_1 , w_2
- ⇒ Need to improve alignment of first part of main linac
 - Initial energy difference
 - but it needs to be define how to do that,
 e.g. switch off some cavities
 - ullet Vary w_1 , w_2 along linac

Using Initial Energy Difference

- need to figure out how to do it
- Optimum weights used according to individual scans
- BPM resolution $\sigma_{res} = 10 \, \mu \text{m}$ (upper) and $\sigma_{res} = 1 \, \mu \text{m}$ (lower table)
- ⇒ Initial energy difference helps, but
- ⇒ Even with precise BPMs barely sufficient
- \Rightarrow energy difference below 10% is of little help for $\sigma_{res}=10\,\mu\mathrm{m}$

$\Delta G_1/G_0$	-0.2	-0.2	-0.2	-0.2
$\Delta G_2/G_0$	0.0	0.0	0.0	-0.1
$\Delta E_1/E_0$	0.0	0.0	0.0	0.0
$\Delta E_2/E_0$	-0.2	-0.1	-0.05	0.0
$\langle \Delta \epsilon_y \rangle [\mathrm{nm}]$	12	15	24	28
$\Delta \hat{\epsilon}_y(90\%) [\text{nm}]$	53	52	69	190
$\Delta G_1/G_0$	-0.2	-0.2	-0.2	-0.2
$\Delta G_2/G_0$	0.0	0.0	0.0	-0.1
$\Delta E_1/E_0$	0.0	0.0	0.0	0.0
$\Delta E_2/E_0$	-0.2	-0.1	-0.05	0.0
$\langle \Delta \epsilon_y \rangle [\mathrm{nm}]$	7	8	14	26
$\Delta \hat{\epsilon}_y(90\%) [\text{nm}]$	24	28	30	120

Emittance Growth

- Case with 20% gradient difference and 10% energy difference is shown
- Relative importance of imperfections very different from case with gradient variation only
- Beam jitter most important via BPM resolution)

Improvement with Dispersion Bumps

- Simulations performed by Peder Eliasson
- Simple bump model: just add dispersion
- One bump before, one after the linac
 - \Rightarrow four degrees of freedom
- ⇒ Dispersion free steering with gradient differences only is not sufficient
- ⇒ Emittance growth is acceptable after bump tuning

Results for LICAS (Preliminary)

- LICAS model provided by Grzegorz Grzelak, Armin Reichold
 - ⇒ interfaced to PLACET
- Only random walk included
- No errors like stakeout etc
- No correction for final point position/reference direction change
- No tuning bumps
- ⇒ Deserves more detailed investigation

Wavelength Dependence

Conclusion

- Using dispersion free steering with different gradients seems not to give satisfactory results
- Adding dispersion tuning bumps seems to solve the problem
- Improvements are possible and need to be studied
- More studies once we converge on a lattice
- LICAS needs to have a close look
- Study of correction with full seperation of tracking and correction started
- Comparison of different alignment methods