

Effect of DIFFERENT QUAD CONFIGURATIONS on EMITTANCE DILUTION in ILC LATTICE

Nikolay Solyak Fermilab

&

Kirti Ranjan
Fermilab and University of Delhi, India

&

Peter Tenenbaum

Stanford Linear Accelerator Center

ILC workshop, Snowmass, August, 2005

ILC MAIN LINAC

USCold LC Main Linac Design

- ⇒ Linac Cryogenic system is divided into Cryomodules(CM), with 12 structures / CM
- ⇒ Magnet Optics : FODO lattice, with phase advance of 60° in each plane
- ⇒ Each quad has a *Cavity style BPM* and a *Vertical Corrector* magnet; horizontally focusing quads also have a nearby *Horizontal Corrector* magnet.

Main Linac Design

- ⇒ ~11 km length
- ⇒ 9 Cell structures at 1.3 GHz and 12 structures per cryostat
- ⇒ Total structures: 7920
- ⇒ Loaded Gradient: 30 MeV/m
- ⇒ Injection energy = 5.0 GeV
- ⇒ Initial Energy spread = 2.5 %
- ⇒ Extracted beam energy = 250.7 GeV

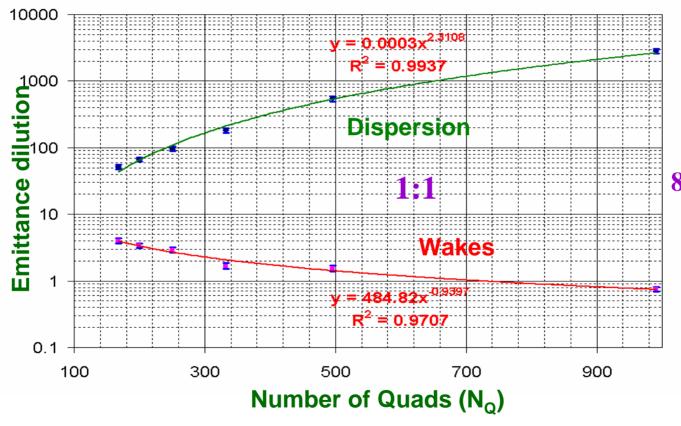
Beam Conditions

- ⇒ Bunch Charge: 2.0 x 10¹⁰ particles/bunch
- ⇒ Bunch length = 300 m
- ⇒ Normalized injection emittance: _Y=20 nm-rad
- \triangleright Emittance growth in linac $_{y} \le 10$ nm-rad

USCOIDLC MAIN LINAC

ab initio (Nominal) Installation Conditions

Tolerance	Vertical (y) plane	
BPM Offset w.r.t. Cryostat	300 μm	→ 30 µm
Quad offset w.r.t. Cryostat	300 μm	in launching region
Quad Rotation w.r.t. Cryostat	300 µrad	(~7 BPM's)
Structure Offset w.r.t. Cryostat	300 μm	
Cryostat Offset w.r.t. Survey Line	200 μm	
Structure Pitch w.r.t. Cryostat	300 µrad]
Cryostat Pitch w.r.t. Survey Line	20 μrad]
BPM Resolution	1.0 µm]

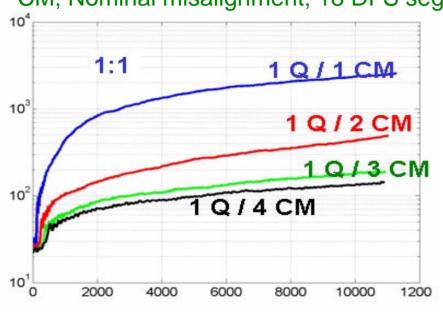

- BPM transverse position is fixed, and the BPM offset is w.r.t. Cryostat
- Only Single bunch used in studies
- ➤ No Jitter in position, angle etc.; No Ground Motion and Feedback
- Steering is performed using Dipole Correctors.

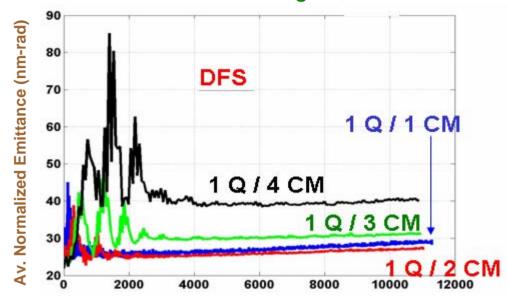
QUAD CONFIGURATION

- 8 configurations with diff. quad spacing (from 1 Quad / 1CM to 1 Quad / 8CM)
- Dispersion Case Quad, BPM Offsets and Structure, CM Pitch
- Wake Case Structure, CM offset, wakefields

30 MV/m TTF CM 8 Cavity / CM

Projected emittance growth is dominated by dispersive sources


Large quad spacing seems to be an attractive choice (?)

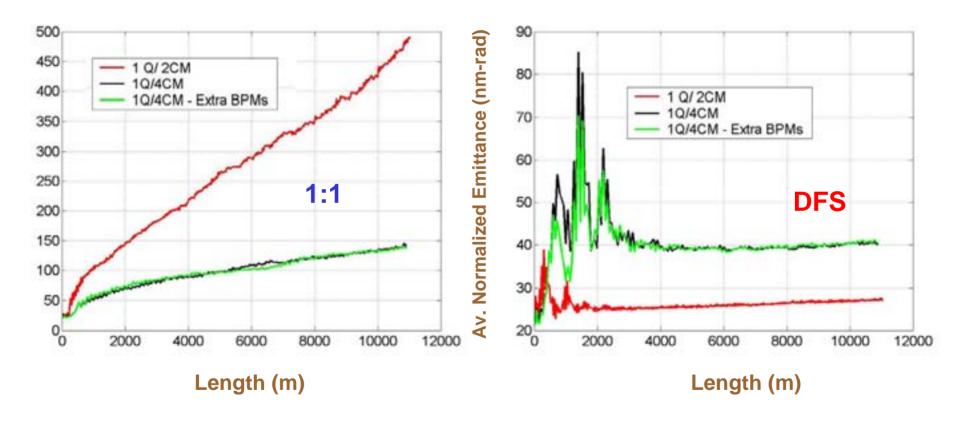


QUAD CONFIGURATIONS

⇒ Constant phase advance of 60°; No Autophasing considered; G=30MV/m; 660 CM; Nominal misalignment; 18 DFS segments; 7 BPMs in launch region; 100 seeds

Length (m)

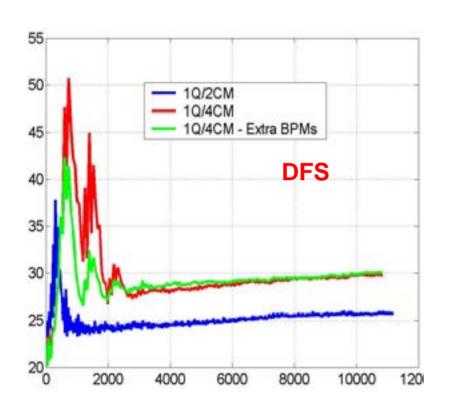
Length (m)


	Mean dilution (nm)		90% dilution (nm)	
	1:1	DFS	1:1	DFS
1 Q / 1CM	2537	8.3	5252	15.3
1 Q / 2CM	470.9	6.9	940.1	13.1
1 Q / 3CM	170.7	11.0	367.3	21.2
1 Q / 4CM	120.8	20.2	232.5	39.4

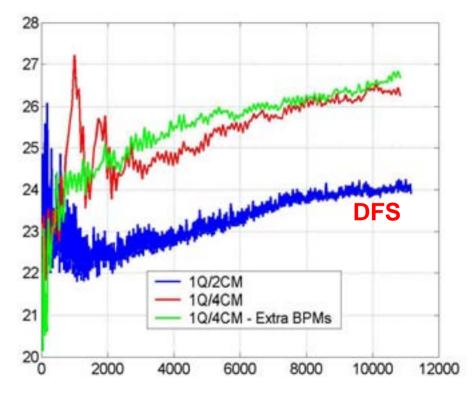
QUAD CONFIGURATIONS

⇒ Effect of ADDING 3 extra BPMs and COR in 1Q/4CM b/w Quads 1-2; 2-3; 3-4

Almost no effect of adding extra BPMs / YCOR



QUAD CONFIGURATIONS

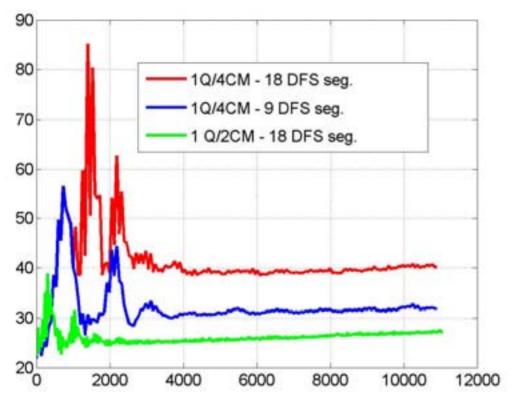


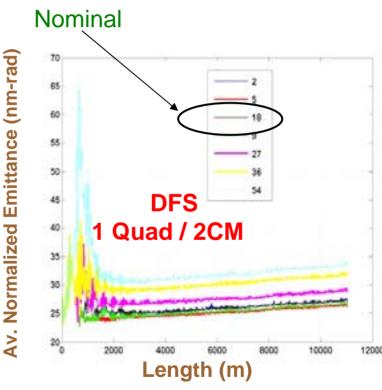
⇒ To avoid the possible systematic effects

RF structure and CM Pitch: OFF

RF structure and CM Pitch : OFF Launch region BPM RMS OFFSET ~ 0

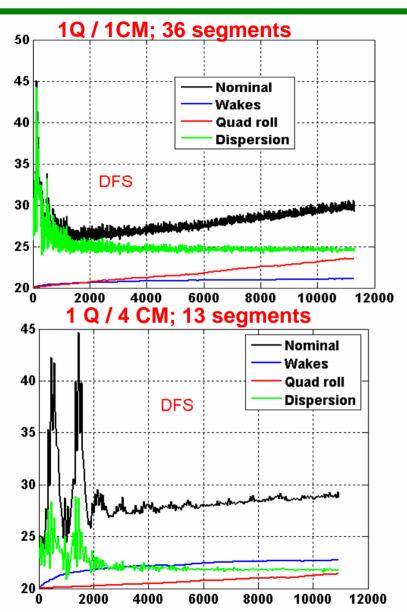
- > 1 Q / 4CM is more sensitive to RF / CM pitches
- > Extra BPMs not improve final emittance

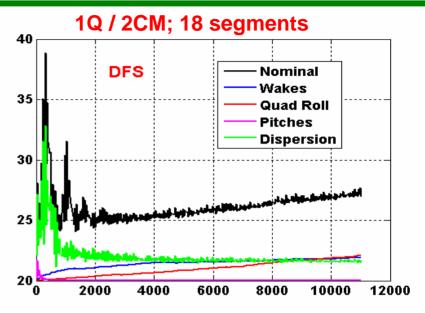


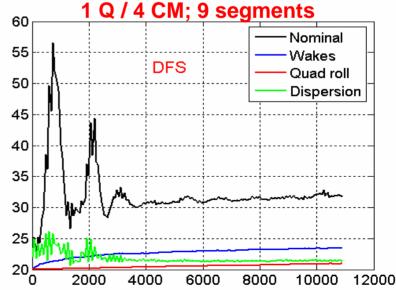

QUAD CONFIGURATIONS. Segmentation

- ⇒ Effect of varying No. of DFS segments for 1 Q / 4 CM;
- ⇒ Nominal misalignment; 100 seeds

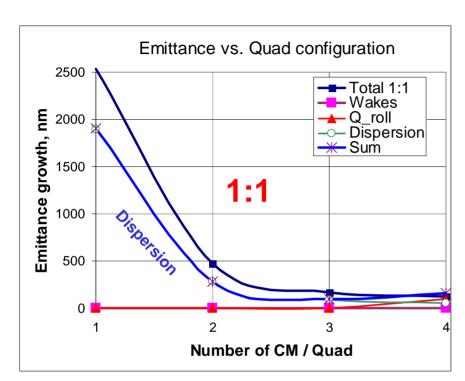
Effect of No. of quads per DFS segment

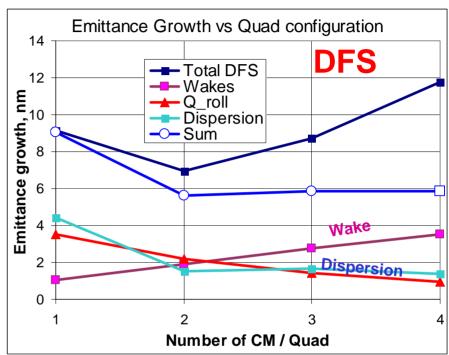



➤ Better for larger number of DFS segment (2,5,9,18 give almost comparable results)



EMITTANCE DILUTION – SOURCES





EMITTANCE DILUTION – SOURCES

DFS:

1Q/2CM is equilibrium optics with equal contribution from each source. Optics with larger quad spacing is wakefield dominated with the systematic wake-related contribution (Sum of all three contributions is smaller that the total calculated emittance growth).

EMITTANCE DILUTION – SOURCES

1 Quad / 4 CM

Nominal[nm]: 1.208e+002 No Wakes[nm]: 5.828e+001 → No Quad roll[nm]: 1.194e+002 → No Quad Offset[nm]: 1.204e+002 No BPM Offset[nm]: 4.692e+001 → No Front BPM Offset[nm]: 1.118e+002 No CM Offset[nm]: 8.799e+001 → No Cavity Offset[nm]: 1.212e+002 → No Cavity Pitch[nm]: 1.195e+002 No CM pitch[nm]: 1.207e+002

DFS

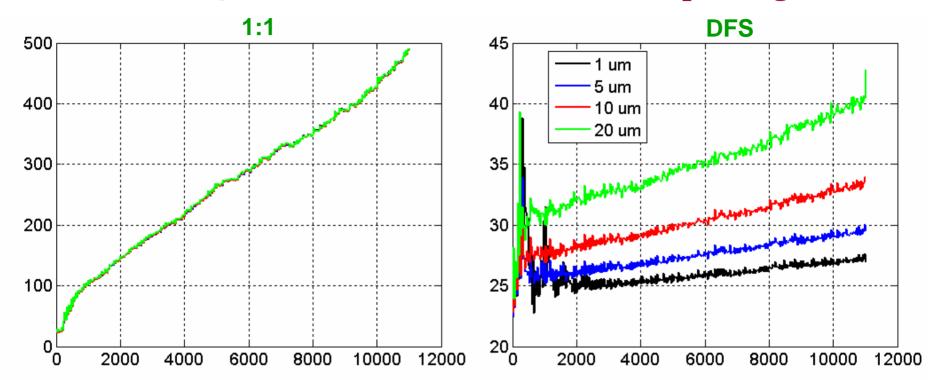
Nommai[mm]:	1.1776+001
No Wakes[nm]:	2.332e+000
→ No Quad roll[nm]:	1.077e+001
→ No Quad Offset[nm]:	1.113e+001
No BPM Offset[nm]:	4.694e+001
No Front BPM Offset[nm]:	8.904e+000
No CM Offset[nm]:	9.314e+000
→ No Cavity Offset[nm]:	1.153e+001
No Cavity Pitch[nm]:	8.564e+000
→ No CM pitch[nm]:	1.132e+001

DFS

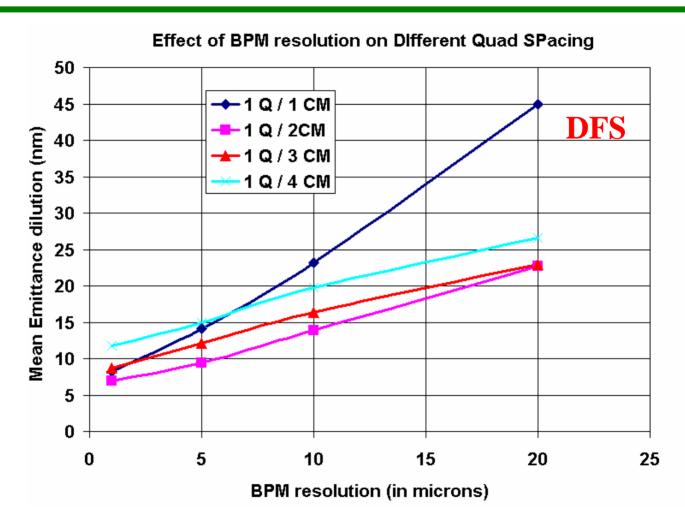
Nominal	11.77
No wake	2.33
No Disp	3.51
No Quad roll	10.77

NaminalInml.

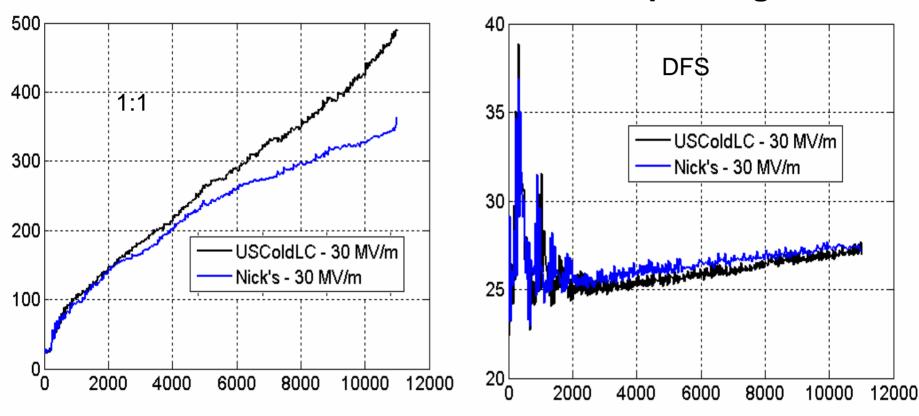
Screw DFS


1 1770+001

EMITTANCE DILUTION – Effect of BPM Resolution

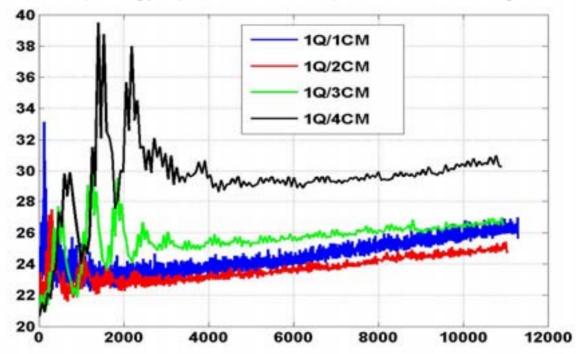

1 Quad / 2CM – 30 MV/m – No Autophasing

EMITTANCE DILUTION – Effect of BPM Resolution


- > Almost no effect for 1:1 steering
- > 1Q/1CM is more sensitive
- No bumps

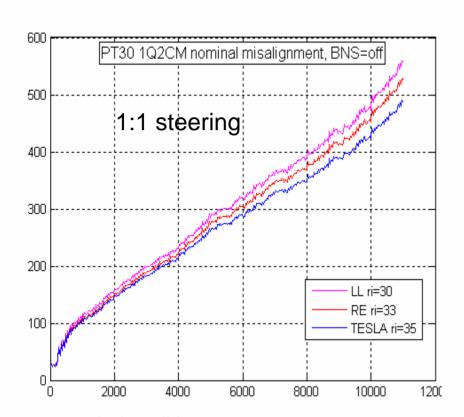
Non-regular Lattices. Nick vs. PT

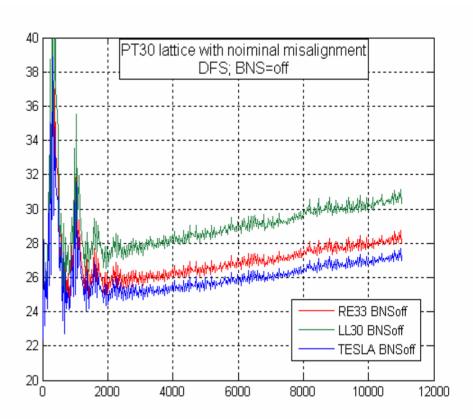
30 MV/m Lattice, No autophasing


- Nick Walker Lattice: 1Quad / 2CM + Matching section + 1Q/3CM (280 Quads)
- Higher emittance growth at the first half-linac for the Nick Lattice id due to non-optimal segmentation? (18 segments in both cases)

QUAD CONFIGURATIONS. Energy spread

⇒ Initial Energy = 15 GeV (energy spread 130 MeV); Nominal misalignment; 100 seeds




	Mean dilution (nm) DFS		90% dilution (nm) DFS	
Injection energy -	→ 5 GeV	15 GeV	5 GeV	15 GeV
1 Q / 1CM	8.3	5.6	15.3	9.1
1 Q / 2CM	6.9	4.7	13.1	9.3
1 Q / 3CM	11.0	6.5	21.2	13.6
1 Q / 4CM	20.2	10.2	39.4	19.3

Emittance in Linac with new HG cavities (RE or LL)

Nominal conditions:

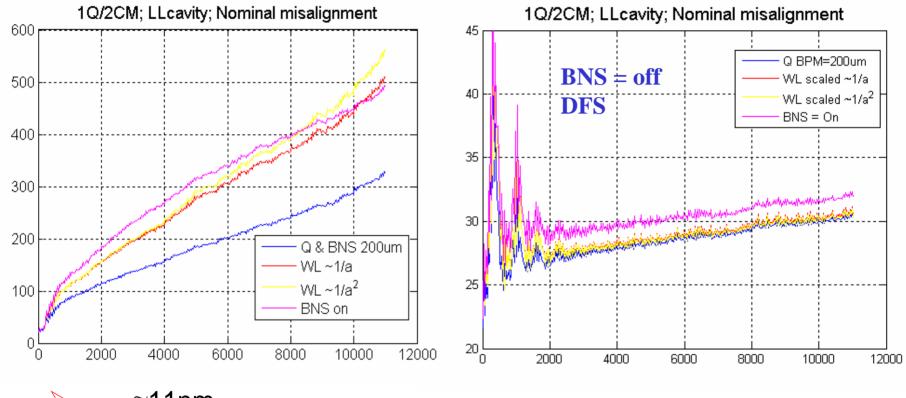
Quad, cavity, BPM offset: $300 \, \mu m$

Quad roll 300 µrad

Cavity pitch 300 µrad

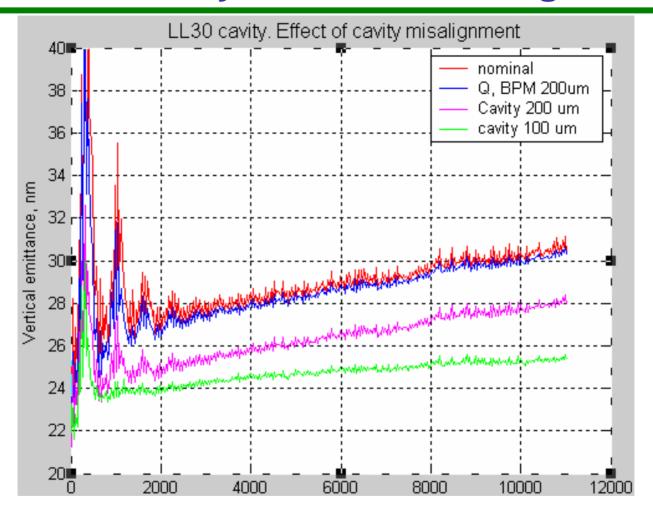
CM offset: 200 µrad

CM pitch: 200 µrad


BPM resolution 1 µm

- ► LL30 Low Loss cavity with 30mm iris
- > RE33 Re-entrant cavity with 33 mm iris
- ➤ Transverse wakefield are scaled ~ 1/a³ from I.Zagorodnov (K.Bane) calculation for TESLA CM
- \triangleright Longitudinal wake is scaled $\sim 1/a^x$, x=x(s)

Effect of Longitudinal scaling law



- > v≈11nm
- Small effects of scaling law for longitudinal wake (WL vs. a)
- > Reduction of Quad and BPM offset installation tolerances from 300µm to 200µm has big effect to 1:1 steering and small effect on DFS

Effect of cavity and Quad misalignment

Tighter installation tolerances will reduce emittance growth Using wake bumps should help to reduce emittance growth

CONCLUSION

- ➤ Few Lattices with different quad configuration (1Q/1QM → 1Q/6QM) were studied.
- ➤ 1Quad / 2 CM lattice seems to be optimal. Contribution of three sources: dispersion, wakefield and x-y coupling for this configuration is almost equal.
- ➤ In higher quad spacing lattices the emittance dilution become wakefield dominated.
- ➤ Lattice with HG smaller aperture cavities (LL cavity Ri=30mm,

RE with Ri=33mm) probably will require tighter cavity/duad offset tolerances (~200um for LL cavity)

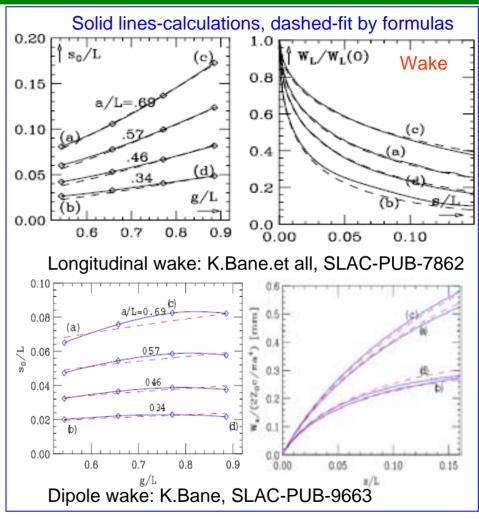
Scaling of NLC simulations to TESLA cavity

If use normalized parameters: $a^* = \frac{a}{L}$; $g^* = \frac{g}{L}$;

$$W_Z(s^*) = \frac{Z_0 c}{\pi \cdot a^{*2}} \cdot \exp\left(-\sqrt{\frac{s^*}{s_0^*}}\right) \cdot \frac{1}{L^2}$$

$$W_{\perp}(s^*) = \frac{4Z_0c \cdot s_1^*}{\pi \cdot a^{*4}} \cdot \left[1 - \left(1 + \sqrt{\frac{s^*}{s_1^*}}\right) \exp\left(-\sqrt{\frac{s^*}{s_1^*}}\right)\right] \cdot \frac{1}{L^3}$$

Where: $s^*=s/L$ – normalized distance

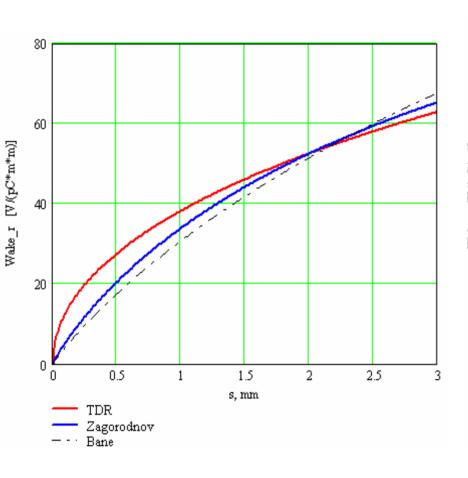

$$s_0^* = (s_0/L) = 0.41 \cdot (a^*)^{1.8} \cdot (g^*)^{1.4}$$

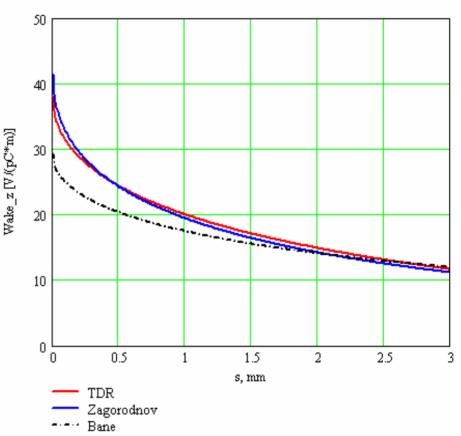
$$s_1^* = (s_1/L) = 0.169 \cdot (a^*)^{1.79} \cdot (g^*)^{0.38}$$

Scaling Laws:

$$W_Z \sim \frac{1}{L^2} \quad W_\perp \sim \frac{1}{L^3} \qquad \qquad (a^*, g^* \text{ fixed})$$
 $W_Z \sim \frac{1}{a^x} \qquad W_\perp \sim \frac{1}{a^3} \qquad \qquad (\text{for fixed L})$

Where $x = x(s/L) = 1 \div 2$, $x(s^*) \sim 2/(1 + 0.46 s^{*0.7})$.


Calculated for parameters in region: $0.34 \le a/L \le 0.69$ and $0.54 \le g/L \le 0.89$


TESLA cavity: $a^* = 0.3$; $g^* \approx 0.8$ (a* out of range calculated NLC parameters, but...)

Comparison TESLA and NLC calculations

For transverse Wakefield good agreement between K.Bane and Zagorodnov/Weiland calculations.

For Longitudinal wakes some disagreement.

Igor formula gives:

$$W_{\rm Z}(0) = 41.5 \left[\frac{\rm V}{\rm pC \cdot m} \right]$$

Karl formula gives:

$$W_Z(0) = 41.5 \left[\frac{V}{pC \cdot m} \right]$$

$$W_Z(0) = \frac{Z_0 c}{\pi \cdot a^2} = 29.4 \left[\frac{V}{pC \cdot m} \right]$$