Performance Simulation of the LiCAS-RTRS Survey Train

Jacek Ciborowski on behalf of:

<u>G. Grzelak</u>^{*}, A. Reichold⁺, R. Bingham⁺, G. Moss⁺, Y. Han⁺, J. Green⁺, J. Prenting[#], M. Schlösser[#], D. Kämptner[#] *University of Warsaw, ⁺University of Oxford, [#]DESY

2005 International Linear Collider Physics and Detector Workshop and 2nd ILC Accelerator Workshop Snowmass, Colorado, August 14-27, 2005.

Outlook

- Linear collider alignment and survey: basic requirements
- Principles of the LiCAS-RTRS train and its simulation
- Simulation of single train stop
- Train operation along the accelerator tunnel
- Random walk model for the error propagation
- Conclusions

Alignment and survey: basic requirements

Alignment involves:

- 1. accelerator component construction accuracy
- 2. accelerator component fiducialisation
- 3. reference survey (\rightarrow this talk)
- 4. stake out
- 5. position adjustment

- Linear e⁺e⁻ Collider will operate at ultra low emittance → alignment of all components will be crucial (cavities, magnets, bpm's, etc.)
- long tunnel (30 km): fast, automated measurement needed (realign with minimum impact on availability)
- tight free space ($\approx 1 \, m$ wide)
- vertically and horizontally curved tunnel sections (Damping Rings), scalable solution needed
- some tunnel sections not geometrically straight
- significant slopes possible $(\rightarrow \text{HLS problem }!)$
- no long term stable reference monuments (LEP: $100 \ \mu m/year$) \rightarrow survey must be regularly repeated

LiCAS-RTRS train: principle of operation

- RTRS: Rapid Tunnel Reference Surveyor mechanical concept of the survey train developed at DESY for TESLA
- collider alignment at construction stage: $200 \ \mu m$ over $600 \ m$ in vertical (example TESLA specification)
- present open air survey technology not sufficient
- LiCAS: Linear Collider and Survey, proposed technology: optical measurements using FSI (Frequency Scanning Interferometry) and Laser Straightness Monitors (LSM)

- automatic train measures reference markers (i.e. defines the reference frame)
- later measure collider position w.r.t. the above co-ordinate system
- scalable laser technology (infrared TELECOMS lasers) using fibre optical amplifiers
- internal laser beam lines in vacuum
- prototype tests at DESY beginning of 2006

- Important components for the simulation (Laser Straightness Monitor, FSI lines):
 - LSM: 1 laser line per train; 2 beam splitters, 4 CCD cameras per car
 - Internal FSI: 6 laser lines, 6 retro-reflectors per car
 - External FSI: 6 laser lines per car, 1 wall marker in front of each car
 - clinometer (not shown)

SIMULGEO: Software used in the simulation

- Object oriented script language for description of opto-geometrical systems
- Mechanical correlations between objects grouped in local frames
- Performs full error propagation (N^2 matrix, very CPU consuming)

- LSM: transverse translation $(Tr_{x,y}, \sigma \approx 1 \mu m)$ and rotation $(Rot_{x,y}, \sigma \approx 1 \mu rad)$
- INT-FSI: longitudinal distance ($\sigma \approx 1 \mu m$) (\pm redundancy for LSM)
- Clinometer: only Rot_z used (insensitive to the geoid shape)

- each train stop provides coordinates of N (=6) wall markers expressed in the local frame of the train
- overlapping measurements of each wall marker
- local measurements are combined to coincide on the same trajectory in the global tunnel frame (simultaneous fit to all measurements)

- results of full SIMULGEO simulation (error matrix rank $N^2 \sim 10000^2$)
- fast growth of transverse errors !

• train stops are coupled to each other via the (previously measured) wall markers

errors: σ_{α} – angular (~ 0.1 μrad), σ_{xy} – transverse (~ 0.5 μm), σ_z – longitudinal (~ 0.1 μm)

Random Walk Monte Carlo: trajectories, fits

- trajectories generated from Random Walk Monte Carlo using parameters from the fit to SIMULGEO points (X, Y) direction
 - good news: points along trajectories are strongly correlated (ie.: small 'oscillations' observed)
 - straight line fits to the Random Walk paths for 600 mtunnel section

• repeating this procedure for many "numerical experiments"...

- mean deviation from straight line fits (X, \mathbf{Y}) direction
- realistic input to the simulations of beam dynamics

- well below specification: $\sigma_x = 500 \mu m$, $\sigma_y = 200 \mu m$
- however: only statistical errors included

Summary

- LiCAS technology is capable of surveying the LC tunnel to desired accuracy: $\mathcal{O}(200) \ \mu m$ over $600 \ m$ tunnel section (TESLA specification)
- Systematics errors under study
- Work in progress on the train calibration procedure (LSM,FSI,...)
- Reconstruction software for wall markers positions using CCD and FSI readout for all train stops under testing