Beam Profile Monitor Using Pixel Detector

- Crossing angle, z location, B-field, and readout electronics -

Fujikawa, Hashimoto, Tani, Yamamoto, Yokoyama (Tohoku University) Ikeda (Space Institute)

Snowmass 2005, Colorado

Hit Location on the Pair Monitor

- ρ measures p_t and ϕ measures p_z .
- For L=176 cm, $p_z\sim 350$ MeV/ $c\rightarrow \phi\sim \pi.$
- The larger B_0L , the greater the dilution of pattern.

Hit Location on the Pair Monitor (w/ Xing angle)

- Crossing angle θ_X gives horizontal p_t of $\theta_X p_z/2$ (comparable to original p_t if $\theta_X \sim 30$ mrad).
- The focused paritcles get horizontal $p_t \rightarrow$ hit the monitor (more hits on monitor).

Omrad Xing, z=4m, B=4T (ILC params)

20mrad Xing, z=4m, B=4T (ILC params)

Seelect sensitive regions

Xing = 0mrad, z = 400 cm


```
20 readings/train
```

Fix σ_x , Vary $\sigma_y = n\sigma_y^0$

Form ratio

$$R_{\rm pv} = \frac{L_1 + L_2}{H_1 + H_2}$$

Try different $L_{1,2}, H_{1,2}$ regions

Xing = 7mrad, z = 400 cm

Xing = 20mrad, z = 400 cm

Xing = 20mrad, z = 176 cm

σ_y resolutions

Tesla-500 parameters, 20 readings/train Average resolution of $2 \times \sigma_y$ and $4 \times \sigma_y$

		3Т	4T	5T
z = 400cm	0mrad	11%	13%	13%
z = 400cm	7mrad	9%	11%	12%
z = 400cm	20mrad	22%	19%	28%
z = 176cm	20mrad	12%	15%	20%

Caveat : Resolution depends on the selection of sampling regions.

Effect of Tail - how big is the tail?

- First preliminary look -

Fraction of total bunch charge out side of the rectangular box of $K \times$ (collimation depth)

Tesla collimation depth = $13\sigma_x, 80\sigma_y$

Fraction outside $7\sigma_x$, $48\sigma_y \sim 4 \times 10^{-4}$ Assume a gaussian with $10 \times \sigma_y$, 0.1% area (Very uncertain!)

Effect of Tail (beam halo)

- First preliminary look -

No tail ILC beam params Omrad crossing z=400cm

The σ_y resolution is worse when

- distance from IP is larger.
- B field is larger.
- crossing angle is larger.

 σ_y resolution ~same for $\theta_X = 1 \sim 7$ mrad.

Things to do:

- Use correct B field (edge effect, Q-magnet, compensating coil etc.).
- More study of the pattern (location of information).
- Measurement of other beam parameters $(\sigma_x, \text{ horizontal shift, azimuthal tilt of bunch etc.}).$
- Robustness of measurement (non-gaussian beam shape, tail, halo etc.)

Pixel Readout Electronics

Pixel electronics for warm machine

- Measure time and pulse height of each hit.
- 4-point sampling (250ns apart).
- $\sigma_t \sim 30$ ns achieved (~goal).
- Survived ~2MRad (goal).

Cannot be used for cold machine, since

- For warm machine, hit rate ~ 0.5 hits/pixel/train.
- For cold machine, it will be ~ 15 hits/pixel/train.
- \rightarrow too much.

Solutions

- Count the number of hits and store it locally on each pixel.
- Read out in train gap (or during the train if possible).
- Threshold is applied \rightarrow insensitive to X-rays etc.
- Digital read out \rightarrow insensitive to RF pickups.

Readout electronics for cold LC

- pixel : 0.4x0.4 mm².
 3D pixel sensor is being designed/fabricated.
- 2. TMSC has 2.54 by 1.27 cm^2 chips : sensor size.
- 3. 27 by 54 pixels/sensor.
- 4. 8-bit gray code counter.
- 5. 9 parallel outputs/sensor \rightarrow 1728 bits/line
- 6. 40 MHz transmission \rightarrow 43 μ s/readout (\rightarrow 20 readouts possible during train, in principle)

Pixel electronics (readout)

Pixel circuit

Readout electronics status and plan

- 1. Conceptual design completed. (Ikeda + 2 students)
- 2. Basic simulations and noise estimations done.
- 3. Finish circuit design by end summer 2005.
- 4. Layout by outsourcing.
- 5. Submit for fabrication (MOSIS) end 2005.
- 6. Test the circuit 2006 spring.
- 7. Bump bond to prototype sensor (company?).