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Why (not) Why (not) scintillatorsscintillators??
• Tested and true, well understood & optimized,
• New developments in cell fabrication & photo-

detection help meet ILC/PFA demands 
– Fine segmentation at a reasonable cost
– Photodetection and digitization inside detector 
⇒min. signal loss/distortion, superior hermeticity

• Can operate in both analog and digital modes
– Measures energy, unlike RPC & GEM that only offer 

hit-counting (“tracking” or “imaging” calorimetry)
– Remains a viable option if digital PFA fails to deliver.
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Design Considerations: PFADesign Considerations: PFA
• Need ≲10 cm2 lateral segmentation.
• At least ~35 layers and ~4λ must fit in ~1 m along R.

– Min. Rin driven by tracker performance.
– Max. Rout limited by magnet and material costs.
– Min. absorber fraction limited by the need for 

shower containment.
• ⇒2 cm thick absorber layers if SS (less if W).
• ⇒0.6-0.8 cm sensitive layers must respond to MIPs

with good efficiency and low noise.
(cont’d...)
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Design Considerations: PFADesign Considerations: PFA
(…cont’d)

• Good lateral containment of showers is important for 
minimizing the confusion term.

• W absorber in ECal ⇒ e/π compensation is not built in 
⇒ must be achieved in software ⇒ particle id (inside 
calorimeter by shower shape?) may be important.
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Design Considerations: OthersDesign Considerations: Others
• The technology must be 

– Reliable,
– Mechanically sound, 
– Operable inside strong (~4.5T) magnetic field,
– Capable of 15+ years of running,
– Tolerant to ~5σ fluctuations in T, P, humidity, 

purity of gas (if any). Monitoring will be necessary 
if response depends strongly on any of these, 

– Suited for mass-production and assembly of 
millions of cells in ~40 layers, (cont’d…)
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Design Considerations: OthersDesign Considerations: Others
• The technology must be (…cont’d)

– Allow hermetic construction (minimum cracks/gaps) 
– Safe (HV, gas, …),
– Compatible with other subsystems (MDI?),
– Amenable to periodic calibration,
– Able to handle the rates (deadtime < 0.1 s?)
– Cost-effective (including construction, electronics, 

operation).
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Hardware testsHardware tests
Cells made of cast (Bicron) and extruded scintillators

(NICADD/FNAL) have been extensively tested with 
many variations of
– Shape (hexagonal, square),
– Size, thickness
– Surface treatment (polishing, coating),
– Fibers (manufacturer, diameter, end-treatment)
– Grooves (σ− shaped, straight)
– Photodetectors (PMT, APD, SiPM, MRS)
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Hardware testsHardware tests
• Different cell and groove shapes with extruded and 

cast scintillators
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Hardware Prototypes (DESY Hardware Prototypes (DESY ““MiniCalMiniCal””))
•DESY 6 GeV e beam 2003-2004
•108 scintillator tiles (5x5cm)
•Readout with Silicon PMs on 
tile, APDs or PMTs via fibres

2 cm 
steel

0.5 cm 
active

DES Y, Hamburg U, ITEP, LPI, MEPHI, Prague
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DESY DESY ““MiniCalMiniCal”” Test Beam resultsTest Beam results
• Resolution as good as

with PM or APD*
• Non-linearity can be 

corrected (at tile level)
– Does not deteriorate 

resolution 
– Need to observe 

single photon 
signals for 
calibration

• Well understood in MC 
• Stability not yet 

challenged

NIM A (2005)
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Choosing the Optimum ThresholdChoosing the Optimum Threshold
Efficiency and Noise Rejection
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0.25 MIP threshold: efficient, quiet
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Miscellaneous MeasurementsMiscellaneous Measurements

Response ratios between types, glues, fibers,…
• Scintillator type: extruded/cast ≈ 0.7
• Optical glue: EJ500/BC600 ≈ 1.0
• Fiber: Y11/BCF92 ≈ 3.2

– Y11 = 1 mm round Kuraray,
– BCF92 = 0.8 mm square Bicron

Extruded/cast (cost) ≈ 0.05
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Optimum parametersOptimum parameters
• Shape: Hexagonal or Square
• Thickness: 5 mm
• Lateral area: 4 - 9 cm2

• Groove: straight
• Fiber: Kuraray 1 mm round (or similar)
• Fiber glued, surface painted
• Scintillator type: Extruded

But a bigger question is the photodetector:
PMTs are costly, bulky, won’t operate in B field.
We have been investigating APDs, MRS, Si-PM…

Based on 
what we 
have learnt 
so far
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The Metal/Resistor/ The Metal/Resistor/ 
Semiconductor Photodiode (MRS)Semiconductor Photodiode (MRS)
• From the Center of Perspective Technologies & Apparatus (CPTA),

• Multi-pixel APDs with every pixel operating in the limited Geiger 

multiplication mode & sensitive to single photon,

• 1000+ pixels on 1 mm x 1 mm sensor,

• Avalanche quenching achieved by resistive layer on sensor,

• Detective QE of up to 25% at 500 nm,

• Good linearity (within 5% up to 2200 photons)

• Immune to magnetic field,

• Radiation-tolerant.

ILCW2005, Snowmass Scintillator-based HCal for ILC 
Dhiman Chakraborty

14



Study of MRS/Study of MRS/SiPMSiPM
• Determination of Working point: 

– bias voltage, 
– threshold, 
– temperature

• Linearity of response
• Stress tests: magnetic field, exposure to 

radiation.
• Tests with scintillator using cosmic rays 

and radioactive source.
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Metal Resistive Semiconductors (MRS)Metal Resistive Semiconductors (MRS)

LED signal
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SiPMSiPM SummarySummary
We have conducted a set of measurements to illustrate the potential 

use of Si photodetectors in High Energy Collider experiments in 
general, and for hadron calorimetry at the ILC in particular.

• Good MIP sensitivity, strong signal (gain ~O(106)),
• Fast: Rise time ≈ 8 ns, Fall time < 50 ns, FWHM ≈ 12 ns (w/ amp)
• Very compact, simple operation (HV, T, B,…),
• Each sensor requires determination of optimal working point,
• Noise is dominated by single photoelectron: a threshold to reject 

1 PE reduces the noise by a factor of ~2500,
• The devices operate satisfactorily at room temperature (~22 ˚C). 

Cooling reduces noise and improves gain, 
• Not affected by magnetic field (tested in up to 4.4 T + quench),
• No deterioration of performance from 1 Mrad of γ irradiation.

ILCW2005, Snowmass Scintillator-based HCal for ILC 
Dhiman Chakraborty

17



SiPMSiPM prospects on the horizonprospects on the horizon
• Bigger SiPMs are under development

– 3mm x 3mm made, but require cooling to -40 C
– 5mm x 5mm thought possible
– cost increase: insignificant (CPTA), linear (H’matsu)?

• 5mm x 5mm may help us eliminate fibers
– put the SiPM directly on the cells
– wavelength matching by n-on-p (sensitive to blue 

scint. light) or WLS film
– hugely simplifies assembly

• Better uniformity across sample with purer Si.
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Simulation StudiesSimulation Studies
Geometries considered

Scint HCal

Steel 20mmPolystyrene 5mm

Gas Geom1

Steel 20mm

Gas 5mm

Gas Geom2

G10

Glass 1mm

Gas 1mm
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ππ++ energy resolution as function of energy resolution as function of 
energy for different (linear) cell sizesenergy for different (linear) cell sizes
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CompensationCompensation
• Cell counting has its own version of the 

compensation problem (in scintillators).
• With multiple thresholds this can be 

overcome by weighting cells differently 
(according to the thresholds they passed).

• In MC, 3 thresholds seem to be adequate.
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ππ++ energy resolution vs. energyenergy resolution vs. energy

Two-bit (“semi-digital”) rendition offers better resolution than analog
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NhitNhit vs. fraction of vs. fraction of ππ++ E in cells with E>10 MIP:E in cells with E>10 MIP:
Gas vs. scintillatorGas vs. scintillator

2-bit readout affords significant resolution improvement over 1-bit 
for scintillator, but not for gas

ILCW2005, Snowmass Scintillator-based HCal for ILC 
Dhiman Chakraborty

23



ππ++ energy resolution vs. energyenergy resolution vs. energy
Multiple thresholds not used
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NonNon--linearitylinearity
• Nhit/GeV varies with energy.
• This will introduce additional 

pressure on the “constant” term.
• For scintillator, the non-linearity 

can be effectively removed by 
“semi-digital” treatment.
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ππ±± angular width: density weightedangular width: density weighted
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Simulation SummarySimulation Summary
• Large parameter space in the nbit-

segmentation-medium plane for hadron 
calorimetry. Optimization through cost-
benefit analysis?

• Scintillator and Gas-based ‘digital’ HCals
behave differently.

• Need to simulate detector effects (noise, 
x-talk, non-linearities, etc.)

• Need verification in test-beam data.
• More studies underway.
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TB:  TB:  ScintScint HCalHCal layer assemblylayer assembly
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SummarySummary
• Simulations indicate (semi-) digital approach to be

competitive with analog calorimetry
• Prototypes indicate scintillator offers sufficient 

sensitivity (light x efficiency) & uniformity.
• Now optimizing materials & construction to minimize 

cost with required sensitivity.
• SiPM and MRS photodetectors look very promising.
• Preparations for Test Beam (Analog tile HCal and Strip 

tail-catcher/muon tracker) are in full swing.

All-in-all scint looks like a competitive option.
We are moving toward the next prototype.
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Thank you!Thank you!
For further details, see talks given by DC at
• The LC study group mtg on 26 May ’05,
• The Beaune Photodetection Conference, 

19-24 June ’05. 
Links at
http://www.fnal.gov/~dhiman/talks.html

ILCW2005, Snowmass Scintillator-based HCal for ILC 
Dhiman Chakraborty

30



Backup slidesBackup slides
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Working point determination with LEDWorking point determination with LED

• The MRS is to able to separate single photoelectrons
• Different response under identical setup 
⇒ working point must be determined for each channel individually
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Cosmic MIP detection with Cosmic MIP detection with SiPMSiPM

Comparable to PMTComparable to PMT

Light output vs bias 
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Noise Rate vs. Bias Voltage & ThresholdNoise Rate vs. Bias Voltage & Threshold

1

10

100

1000

10000

100000

1000000

10000000

48.5 50.5 52.5 54.5 56.5
Bias (V)

Fr
eq

ue
nc

y 
(H

z)

70mV

80mV

90mV

1

10

100

1000

10000

100000

1000000

10000000

0 50 100 150
Threshold (mV)

N
oi

se
 (H

z)

52V

50.6V

49.6V

• The right end of the plateau region in the Figure on left is optimal 
for our purpose.  

• For thresholds in the range of 80±10 mV and bias voltage in 

50.0±0.5 V, the dark noise is well under control.
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Signal & Noise Amplitudes vs. Bias VoltageSignal & Noise Amplitudes vs. Bias Voltage
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• For this particular device S/N  peaks at Vbias≈ 52 V 
• Sharp peaking in S/N⇒ working point must be found for each piece.
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Temperature DependenceTemperature Dependence
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• Bias = 51.3 mV, threshold = 80 mV

• Loss in signal amplitude with increase in T ≈ 3.5%/˚C
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Fiber Positioning on MRSFiber Positioning on MRS

Optimal fiber-sensor 

mating is crucial.
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Linearity of ResponseLinearity of Response
Since the response of an individual pixel is not proportional to nγ, 

(unless it has had time in between to recover), non-linearity is 

expected when the detector receives a large number of photons.
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Stress Tests: Effect of Stress Tests: Effect of MagMag. field. field
No significant effect of fields up to 4.4 T and quenching at 4.5T:
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Stress Tests: Effect of IrradiationStress Tests: Effect of Irradiation
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• No detectable damage from 1 Mrad of γ:
y = 6E-05x + 1
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Hit timingHit timing
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Hit timing (contd.)Hit timing (contd.)
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Hit timing (contd.)Hit timing (contd.)
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Hit timing (contd.)Hit timing (contd.)
Scintillator

RPC

•Same Z→jj event at pole

•Same cell size (1cm x 1 cm) 

•Same threshold of 0.25 MIP
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Hit timing (contd.)Hit timing (contd.)
ECal hits in the same events as on 
the last slide 
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Time of flightTime of flight
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TimeTime--ofof--flight dependence of resolutionflight dependence of resolution

100ns/5µs
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Avalanche PhotoAvalanche Photo--DiodesDiodes
Hamamatsu APD gain vs V @ diff wavelengths (T= 18 ºC)
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