Neutral Particle ID Status in PFA

Steve Kuhlmann

Argonne National Laboratory

for Steve Magill, U.S. LC Calorimeter Group

Photon ID Update With HMatrix Photon/Neutron Tagging with Neural Net

- Remove MIP Hits from Tracks (finished and in org.lcsim)
- Remove Hits From Photons Using Real Algorithm (Snowmass goal)
- Then Remove Remaining Hits from Tracks (finished and in org.lcsim)
- Then Cluster the Remaining Hits for Neutrons/K_{Long} (finished and in org.lcsim)
- Add a Neural Net for Neutron/K_{Long} Quality and Energies (Snowmass goal)

Simple 3 cut photon finder from Jan 2003 (!), not good enough for champagne

- Reject EM Clusters if within Delta-R<0.03 from Track (0.2% loss of real photons)
- 2. Shower Max Energy > 30 MeV (MIP=8 MeV)
- 3. Reject EM Cluster if Delta-R< 0.1 AND E/P<0.1

Hadronic Z Decays at $\sqrt{s} = 91$ GeV

Total Hadron Level Photon Energy (GeV)

Hadronic Z Decays at $\sqrt{s} = 91$ GeV

Total Photon Candidate Energy - Monte Carlo Photon Energy

Total Photon Energy - Total Monte Carlo Photons (GeV)

Reject EM Clusters if within Delta-R<0.03 from Track (0.2% loss of real photons)

- 2. Shower Max Energy > 30 MeV (MIP=8 MeV)
- 3. Reject EM Cluster if Delta-R< 0.1 AND E/P<0.1

Replace with Norman's HMatrix

HMatrix Performance

180 -

170-160-150-140-

130

110+

100-90-80-70-60-50-40-30-20-10-

-10

-9

-8

-7

-6

Need samples with 250, 500, 750 MeV

Log(Probability) for 5 GeV Charged Pions

-5

-3

-2

-1

Log ChisqD Probability

Entries :

Mean : -8.7125 Rms : 2.9618

198

HMatrix Performance

Log ChisqD Probability

Example of Good Chisq

Example of Bad Chisq

Good vs Bad Chisq

5 layers = 3.3 X0 1 - EXP(-7/9 * 3.3) = 7%

Hadronic Z Decays at $\sqrt{s} = 91$ GeV

Simple 3 cut Photon Finder, Peak 0.25 GeV, Sigma 2.8 GeV

HMatrix

Peak -2.2 GeV, Sigma 2.0 GeV

Larger Tails

Total Photon Energy - Total Monte Carlo Photons (GeV)

Next step in neutron algorithm is to send unused hit clusters to the SLAC Neural Net for quality cut.

> Test hep.lcd example code (done) Convert to org.lcsim (debugging) Retrain net with latest detectors?

Cluster identification

- Use cluster properties + a neural net to identify the particle that created the cluster.
- The ClusterID algorithm (by Bower, Cassell, Pathek) currently identifies gammas, charged hadrons, neutral hadrons and fragments. Available in CVS.
- <u>http://wwwsldnt.slac.stanford.edu/nld/ClusterID/</u>
- Web page is underdevelopment.

15 Discriminators

- 3 normalized energy tensor eigenvalues, ne1,ne2,ne3.
- ne1/ne2, ne2/ne3.
- First layer hit, last layer hit, length of cluster, (firstL+1)/length.
- Angular separation between e1-axis and IP.
- Energy in first 5 layers.
- Nhits in first 2 layers.
- · z-coordinate of center of energy.
- Nhits
- Measured cluster energy.

1110 fragments in 500 charged pion events

226 ID'd as charged pion, 27 as photon, 822 as Fragment, 35 as neutral hadron (3%)

Gamma, Pi-, Neutron all 5 GeV, Fragments come from Pi-

Input	Gamma	Pi-	Neutron	Fragment
Gamma	100%	0%	0%	0%
Pi-	8%	44%	37%	11%
Neutron	11%	12%	44%	33% (would like smaller)
Fragment	2%	21%	3% (promising)	74%

First looks at HMatrix and ClusterID are promising

Finish conversion to org.lcsim and PFA implementation

Backup Slides...

5 GeV single charged pions

Note: fragment is different than Fragment!

Delta-R from EM Cluster to Track

Hadronic Z Decays at $\sqrt{s} = 91 \text{ GeV}$

5 GeV Pion Fragments after MIP clusters are made

Analyzed 1 events in 170 milliseconds

ClusterID recon efficiency

SD detector with no gap between EM and Had cals.

Zmass at Zpole

Refined Cluster Identification

- What limits efficiencies and purities of ClusterID?
- Using tools like Cluster Analysis (Ron's talk) can identify which cases are IDed wrong.
- Then think up new methods for those cases.
- Eg, fragments
 - Point fragments back to their origin.
- Eg, overlapping clusters
 - Raise hit E level to separate clusters.
 - Shape algorithm to see two gamma bulges.

The essential elements

- Calorimeter hits (digital or analog).
- A cluster builder technique
- A cluster identification technique (can use tracking information).
- To reconstruct events:
 - Make a reconstructed particle for each cluster and track.
- To study efficiency (& purity):

- Make a clusterlist (& reconstructed particles).