SiD Calorimeter Overview

José Repond Argonne National Laboratory

Snowmass Workshop, August 14 – 27, 2005

Very active group

		See the dial-in instructions in the meeting	
		announcement email.	
		(<u>Request</u> to receive these emails.)	
July 27, 205	Graham Wilson	on improving jet EM resolution in the ECal	ppt pdf
	Ray	update on 20+10 configuration	ppt pdf
	all	Snowmass plans update; Discussion doc:	<u>html</u> <u>pdf</u>
July 20, 2005	Guilherme Lima	tools for non-projective geometries, status	<u>pdf</u>
	Ray Frey	ECal sampling update I> see July 27 talk	
		plans for Snowmass, contd.	pdf
July 13, 2005	all	Plans for Snowmass	<u>pdf</u>
	Steve Magill	clustering, status report	interactive
	Lei Xia	projective/non-projective simulations	ppt
	Guilherme Lima	tools for non-projective geometries, status	<u>pdf</u>
June 22, 2005	Ray Frey	EGS Studies (contd)	ppt pdf
	Graham Wilson	EGS/Geant4 comparisons	<u>pdf</u>
	Lei Xia	HCal: geometry, n response, resolution	ppt
June 8, 2005	Ron Cassell	Neutral hadron response	ppt
	Lei Xia	Neutral hadron response	ppt
	Ray Frey	EGS Studies for the ECal	ppt pdf
May 25, 2005	Steve Magill/Norman Graf	Neutral hadron response	ppt
	Lei Xia	Neutron energy resolution	ppt
	Ray Frey	EGS studies for the ECal	pdf ppt
May 4, 2005	Jose, Ray	Welcome, working group goals, 10'	
	Tim Barklow	SiD Benchmarking, 20'	pdf ppt
	A11	PFA status and plans, 5' each; A mini-workshop in early summer?	

(Almost) weekly meetings

Concentrating on development of PFAs with the goal of tuning the detector design

Talks can be downloaded from SiD web page

Rôle of the Calorimeter

We all believe in PFAs...

Particles in jets	Fraction of energy	Measured with	Resolution [σ^2]	
Charged	65 %	Tracker	Negligible	
Photons	25 %	ECAL with 15%/√E	0.07 ² E _{jet}	
Neutral Hadrons	10 %	ECAL + HCAL with 50%/√E	0.16 ² E _{jet}	
Confusion	Required	for 30%/√E	≤ 0.24 ² E _{jet}	

E/

Identifies energy associated with charged particles in a jet

Provides measurement of neutrals in jets

 + Identifies electrons through shower shape Identifies and measures muons and tau's Measures missing energy Vetoes 2-γ events (forward) Measures luminosity spectrum (endcaps)

Concept of the SiD Calorimeter

1) Located inside the coil

2) Finest readout segmentation possible

In ECAL of order 0.2 cm² In HCAL of order 1.0 x 1.0 cm² } laterally Layer – by – layer longitudinally

3) Thinnest possible active detectors

Minimize $R_{Moliere,}$ and cost In ECAL of order 1 – 2 mm In HCAL of order 5 – 10 mm

4) Absorber

Tungsten in ECAL ($R_{Moliere} \sim 9 \text{ mm}$) Steel (default) or Tungsten in HCAL

Technical Realization: ECAL

0.250 cm

0.068 cm 0.032 cm

0.025 cm

0.375 cm

Silicon – Tungsten Sandwich

30 x Silicon Air

Overall thickness

~ 22
$$X_0$$
 or ~ 0.8 λ

Barrel

 $R_1 = 127 \text{ cm} \rightarrow R_0 = 138.25 \text{ cm}$ -179.5 cm < z < +179.5 cm

Endcaps

 $z_{\rm I}$ = 168 cm \rightarrow $z_{\rm O}$ = 179.25 cm 20 cm < R < 125 cm

Readout segmentation

~ 0.16 cm²

Single electron resolution

Ray's preferred structure 20 x 5/7 X_0 + 10 x 10/7 X_0

corresponding to 29 X_0

corresponds to $5/7 X_0$

Technical Realization: HCAL

RPC – Steel Sandwich

Single π^+ resolution

55 – 65 %/√E

the simulation now?

Choices for HCAL active media

	Scintillator	GEMs	RPCs	
Technology	Proven (SiPM?)	Relatively new	Relatively old	
Electronic readout	Analog (multi-bit) or Semi-digital (few-bit)	Digital (single-bit)	Digital (single-bit)	
Thickness (total)	~ 8mm	~8 mm	~ 8 mm	
Segmentation	3 x 3 cm ²	1 x 1 cm ²	1 x 1 cm ²	
Pad multiplicity for MIPs	Small cross talk	Measured at 1.27	Measured at 1.6	
Sensitivity to neutrons (low energy)	Yes	Negligible	Negligible	?
Recharging time	Fast	Fast?	Slow (20 ms/cm ²)	
Reliability	Proven	Sensitive	Proven (glass)	
Calibration	Challenge	Depends on efficiency	Not a concern (high efficiency)	
Assembly	Labor intensive	Relatively straight forward	Simple	
Cost	Not cheap (SiPM?)	Expensive foils	Cheap	

Entries in

Technical Realization: Very Forward Calorimeter

Still needs to be developed/implemented....

Fine Tuning of the Calorimeter Design

Many design parameters to adjust

Overall	Inner radius of calorimeter Outer radius of calorimeter
	Transition from barrel to endcaps
	Transition from endcaps to very forward calorimeters
ECAL	Absorber thickness (uniform, varying with depth) Number of layers Segmentation of readout
HCAL	Absorber choice \rightarrow Tungsten (2 X ₀) versus steel (1 X ₀) Number of layers Active medium (RPC, GEM, Scintillator) Segmentation of readout Resolution of readout (number of bits)
Tail catcher	Needed? Same technology as HCAL

Need reasonably well performing PFA to evaluate different designs

Reasonably well performing PFA

Jet energy resolution of 40%/ \sqrt{E} or better

Test with $e^+e^- \rightarrow W^+W^-$ at $\sqrt{s} = 500 \text{ GeV}$ Reconstruct W mass with $\Gamma \leq 4 \text{ GeV}$

Allowed tricks (at the moment)

Use of MC truth for track parameters Cut on event axis to be within 55 degrees of normal Eliminate events with significant energy in neutrinos Use of code by other developers

Reward for 1st person/group to achieve goal

Several bottles of champagne (John, José, Harry)

Particle Flow Algorithms

Clustering of calorimeter hits

Matching of clusters with charged tracks

Photon finder

Neutral hadron energy measurement

Special tasks

Most important subtask of PFAs...

Clustering of calorimeter hits

Tubes (Kuhlmann, Magill)

Adding hits in cones originating at high density points Tuned cone size

Directed tree (NIU)

Cone algorithm (Yu)

Using maximum density cells as centroids Add hits (energy) in cones

Layer – by – layer (Ainsley)

Minimizing distance between hits in adjacent layers Tracking algorithm

Calculate density differences for pairs of cells Use maximum density difference to either start new cluster or merge cells

....more

Density weighted (Xia)

Defined geometry independent density function Seeds are cells with highest density Cluster hits with densities above a given cut

Clustering of calorimeter hits

Criteria for performance

Efficiency (find all hits belonging to a given particle) Purity (reject hits not associated with a given particle)

Example from Ainsley

5 GeV (π ⁺n) event at a distance of 5 cm

Distribution of event energy [%]	True cluster ID	
Reconstructed cluster ID	7.4	40.1
	46.3	6.1

Quality = Fraction of event energy that maps in a 1:1 ratio between true and reconstructed clusters

Photon finders

Using Minimum Spanning Tree clustering (lowa)

- Evaluation of Number of hits in cluster Distance to closest MIP track Eigenvalue of energy tensors
- Performance 99% γ efficiency with 5% π^+ contamination Good energy reconstruction

Using HMatrix (Graf, Wilson)

Waiting for input from Norman

Example using Neural Nets (Bower, Cassell)

Calculates energy tensor of clusters Neural net separates into

EM clusters Neutral hadronic Charged hadronic EM fragment Hadronic fragment

Putting it all together

Problem I: Can we trust GEANT4?

Problem II: Sensitivity to slow neutrons?

-			Ê ¹³⁰	, ⊢	adron shower (50 GeV)
	Scintillator	RPC Gas	ator(n	-	•
Molecule	C ₆ H ₅ CH=CH ₂	C ₂ H ₂ F ₄	cintilla	- - • - • •	• •
Density	1.032 g /cm ³	4.3 x 10 ⁻³ g/cm ³	о е 11(- V - -	
Thickness	5 mm	1.2 mm		- - -	
Sensitivity to slow neutrons	small	negligible	tMS ra	-	RMS radius in Fe/RPC
Hadronic shower radius	larger	smaller	90 91		(no cut on hits applied)
Single particle resolution	better	worse	80		
				0 250	0 5000 7500 10000 Ecut on hits (KeV)

 K_L^0

Neutron

Momentum [GeV/c]	5	10	20	Momentum [GeV/c]	5	10	20
$\sigma = x\sqrt{E}$ Scintillator		(54.2)	(55.5)	$\sigma = x\sqrt{E}$ Scintillator		(54.2)	(55.5)
$\sigma = x\sqrt{E}$ RPC	0.57	0.66	0.64	$\sigma = x\sqrt{E}$ RPC	0.78	0.80	0.74
		<u></u>					

Different shower models in G4?

Tradeoff

More studies needed...

Plans and Goals for Snowmass

-		
Tue Aug 16	8:30 -12	SiD plenary; 15 min Calorimeter talk - Jose Repond, ANL
		SiD mini-plenary
	1:30-2:30	 SiD concept discussion - Marty Breidenbach, SLAC LC simulation tools for SiD - Norman Graf, SLAC
	2:30-3:30	SiD calorimeter parallel session
		 Schedule and overview - Jose Repond, ANL Current Particle Flow (PFA) status, goals for Snowmass - Steve Magill, ANL (unconfirmed)
Wed Aug 17	8:30 - 9:30	SiD calorimeter parallel session
		ECal pattern recognition/clustering algorithms - Series of 10 minute talks:
		Chris Geraci, Colorado - comparing existing algorithms
		Mathew Phillips, Colorado - pi0 clustering
		• Niels Meyer, Iowa: MST for the ECal
		• Granam wilson, Kansas - II-matrix clustering and pio s
		SiD calorimeter parallel session
		HCal/hadron clustering algorithms - Series of 10 minute talks
		Steve Kuhlman, ANL - neutral clustering
		Guilherme Lima, NIU - density weighted clustering Mathema Charles, Lower, MIT in the UCel
	10:00 - 12	• Manew Chanes, Iowa - MS1 II the HCal • Lei Xia ANL - hadron clustering
		HCal response and technology choices/tradeoffs
		Lei Xia, ANL - neutral hadron response with Geant4 - 15'
		Steve Magill, ANL - Alternative HCal configurations (unconfirmed) - 15'
		• Dhiman Chakraborty, NIU - The case for a scindulator HCal for SiD - 15
	1:30 - 3:30	Joint MDI session with all concepts
	4:00 - 5	SiD calorimeter parallel session
		Forward calorimeter issues and technologies
		Wolfgang Lohmann, DESY - technology options - 20'
Thur Aug 18	8:30 - 12	Detector parallel sessions (see program web pages)
		30 min talks on calorimetry for each concept - SiD: Jose Repond, ANL
		• detector or test beam talks for people not attending week 2

Goals

Introduce more people to PFA studies

Make progress toward a default PFA

Preliminary studies of detector design parameters

(Confront HCAL technologies)