Imaging capabilities of position sensitive Silicon radiation detectors

Exemplary Illustrations

International Linear Collider Physics and Detector Workshop

Snowmass, August 20, 2005

Massimo Caccia Universita' degli Studi dell'Insubria massimo.caccia@uninsubria.it

The Opponent

- highly granular
- optimized for single particle detection (high gain, high S/N, limited dynamic range)
- quick readout of sparsified significant data
- time stamping of hit pixels
- ~ 40 MHz; efficient reset
- radiation tolerant

The Defender

- highly granular
- optimized for the detection of a particle flux (global shutter, extended dynamic range)
- slow readout of dense significant data, possibly over the full frame
- significant image lag on the retina
- severely annoyed by radiation

Is there a way for the opponent to beat the defender?

A different way of building up an image

FIG. 1. Micro-calcification or tumor embedded in average breast tissue with notation used in the text.

Mammography screening

the standard available spectrum is far from being monegramatiche flux

•And the cross section features quite Where ni is the number of pixels of a strong dependence on the energy energy Ei = the weight in defining he sic

 $\tau(E) = 24.15Z^{4.2}E^{-3} + 0.56Z,$

Is it the OPHIMAL WAY to achieve my bean ile agenentothe chaxily and contrast behave the incorrigition coald ntto the flux!

Weighting

[I identify each photon, I measure the energy and I assign a weight ÷ E⁻³]

SNR	Water/	Adipose/
enhancement	Breast	Breast
Integrating	1.0	1.0
Counting	1.3	1.2
Weighting	2.0	1.8

[Natalie Diekmann - NIKHEF]

So, for specific applications, Silicon eyes detecting the single occurrency, possibly measuring the deposited energy, can provide a *better* image

... a few exemplary illustrations

The MEDIPIX family

MEDIPIX 2; main characteristics:

- squared pixels, 55 μm pitch
- 256 x 256 pixel matrix
- leakage current compensation
- energy windowing with lower and upper thresholds, tunable on each pixel by a 3 bit DAC
- 13 bit counter, integrated in each pixel cell
- maximum counting frequency ~ 1 MHz
- maximum readout frequency ~ 100 MHz
- designed in 0.25 μm technology
- 500 transistors/cell

(33 million transistors/chip)

MEDIPIX I – applicationsX raying sardines...

- Mo X ray tube + 30 μm Mo filter, 25 kV
- Source- detector distance
 50 cm
- chip interconnected to a Si detector, 300 μm thick
- integration time: 500 ms

MEDIPIX I; applications Dental radiography

Bechmark: 1-3 mGy dose with conventional film emulsions

Universities of Glasgow, Freiburg and Mid-Sweden

Relevance of energy measurement in autoradiography The DEPFET results

J. Ulrici et al. / Nuclear Instruments and Methods in Physics Research A 547 (2005) 424-436

Fig. 16. (a) Simultaneous measurement of 3 H- and 14 C-decays with a piece of a 3 H-labelled leaf and a 14 C-labelled twine. (b) Hit distribution if no energy information is used. (c) Hit distribution for 14 C-events. The twine but not the leaf is seen in the image. (d) Hit distribution for 3 H-events. The leaf but not the twine is seen in the image.

SUCIMA - selected results

Explored Imaging applications:

- dosimetry of brachytherapy sources
- real time monitoring of a hadrontherapy beam
- radiotherapy beam profilometry
- sensitive element into a HPD
- 3H imaging
- e-scopy
- solar spectra recording
- calibraton/imaging with a cristallography beam

General purpose advances (flowing back to HEP as well!):

- SOI development
- extreme backthinning
- radiation hardness to ionizing radiation
- characterization in terms of "unusual" figures (e.g. efficiency of the reset mechanism (image lag); image blooming)

The TERA accelerator complex for radiotherapic treatments

energy: 7 MeV p, 7 MeV/u ${}^{12}C^{6+}$ emenger age intensity range: 29 p.A((${}^{2}C^{6+}$))::8631 nA(pp)

Treatment quality

dosimetry ionization chamber (80 kHz)

(GSI - Darmstadt)

dose uniformity: ± 2 %

Main goal of SUCIMA connected to real-time monitoring: SLIM = Secondary Emission for Low Interception Monitoring

Basic principle: collection and imaging of secondary electrons emitted by thin Aluminum foils (t \approx 0.2 \div 0.4 µm, $\phi \approx$ 60 \div 70 mm) as the beam is delivered

The SEM beam monitor

Mirco Nodari

A closer look at the FOCUSING SYSTEM:

Demagnifying factor ~ 5

Secondary emission electrons drifted and focalized through a 20 kV field

detector

source points

The integrated system at CERN

Preliminary tests of the Focalization System using thermo-ionic emission by a hot tungsten wire:

The SLIM installed on an extraction line at the Ispra JRC-Cyclotron (p, 2H, 4H at energies 8-38 MeV, 100 nA- 100uA)

First images of a beam, imaging the focalized Secondary Electrons by a Multichannel-plate+Phosphor screen+CCD camera system

Tests with an extremely backthinned MIMOSA-5

Figure 4.10: Schematic drawing of the collimator placed on the beam path, consisting of a 12 mm-thick aluminum block with 6 rows of holes of 1 mm diameter. The hole pitches range from 1.5 up 6.5 mm.

Projected image along one row of holes

- measure the de-magnifying factor
- measure the "point spread function" (~140 $\mu\text{m})$
- try understanding the origin of the background \Rightarrow study image blooming under saturating conditions

Raw image

A dedicated sensor, with no dead time and a dynamic range up to 2000 mips/pixel/100 us frame has been designed, produced, backthinned and it is being hybridized

Back to light Imaging the Solar spectrum with a 100% fill factor extremely backthinned MIMOSA5

Analyze the polarization of the solar spectrum from the sun chromosphere (emission spectrum from a low density gas at ~ 10^4 K), overwhelmed by the absorption spectrum from the photosphere at any time but during a total eclipse

 \Rightarrow Get as many frames as you can over ~20", scanning the spectrum and the polarization (then you will have a few years to analyze your data...)

It was interesting to perform an experiment comparing the visible light imaging properties of a MIMOSA 5 sensor to a "standard" CCD camera (by the way, manufactured by E2V), in view of the possible use of one of the SUCIMA chips, featuring a 10 kHZ frame rate

The solar telescope at IRSOL, based in Locarno (Switzerland)

- QE comparison
- image blooming study
- image lag (reset efficiency study)

Conclusion

• non HEP applications may really be a great fun!

• HEP sensors most often are NOT what you really need but they are the "workhorse" for a demonstrator program and define the guidelines for application specific developments

• the impact on the sensor R&D is definitely non trivial

• these applications may generate a lot of enthusiasm in people who have the chance to see a "real" table-top experiment in an international collaboration, with a reasonable time scale and the possibility to understand any aspect from head to toes

 but success stories do not come for free and a real effort has to be invested!