

CMOS - Sensor development for the ILC in Europe

Michael Deveaux (GSI/IReS), on behalf of:

IReS: A. Besson, G. Claus, C. Colledani, (G. Deptuch), M.Dorokhov, W. Dulinski, M.Goffe, D. Grandjean, F.Guilloux, A. Himmi, Ch. Hu, K. Jaaskelainen, M.Pellicioli, E. Scopelliti, A.Shabetai, M. Szelezniak, I.Valin, M. Winter (Project coordinator)
GSI/IReS: M. Deveaux, S. Heini, H. Souffi-Kebbati
CEA: Y. Dergerli, N. Fourches, Y. Li, P.Lutz, F. Orsini
Acknowledgements to the SUCIMA collaboration

The MIMOSA - Technology

Minimum Ionizing Particle MOS Active Pixel Sensor

MIMOSA IV

Typical features of the MIMOSA – detectors:

20 µm pixel pitch, 12 bit serial readout:

- Single point resolution $1.5\mu m 2.5\mu m$
- $\sigma_{2hits} \ge ~ 30 \ \mu m$
- S/N for MIPs (~100 GeV/c): 20-30 (MPV)
- Detection efficiency: $\varepsilon_{det} \sim 99-99.9 \%$
- Standard sensor: 1MPixel, 120µm thickness
- 3 Wafers were thinned to 50µm...*
- Produced in:

AMS-0.6μm, AMI-0.35μm, AMS-0.35μm, AMS-0.35μm opto, IBM-0.25μm, TSMC-0.25μm

• Further Applications: STAR, CBM

* see talk from H. Wieman, LBL

CMOS sensors in the ILC VD

Overall design a priori very similar to TESLA TDR concept (CCD):

- 5 cylindrical layer
- R = 15 60 mm
- surface ~ 3000 cm²

Basic characteristics:

- sensor thickness: ~ 25-50 µm
- support thickness: ~ 50 µm carbon fiber
- < 3-30W (full detector, 1/200 1/20 duty cycle)</p>

See talk of D. Grandjean for more details

Requirements on the sensors

Expect up to ~15 hits/cm²/BX from beamstrahlung

Readout speed required:

- ~ 25 µs in Layer 0
- ~ 50 µs in Layer 1
- < 200 μ s in Layer 2 4

Corresponding radiation dose (3 years):

- $3x10^{10} n_{eq}/cm^2$ due to neutron gas (safety factor = 10)
- $6x10^{12} e^{\pm} / cm^2$ due to beamstrahlung ($2x10^{11} n_{eq} / cm^2$ with mean NIEL-Factor assumed = 1/30)

See talk of D. Grandjean for more details

Status: Resistance against ionising doses

Testing the detector with an ⁵⁵Fe source before and after irradiation

- First prototypes (MIMOSA2) were radiation soft.
- Key problem: Charge collection.
- Weak point has been identified and fixed in SUCCESSOR1 (SUCCESSOR 1 was provided by the SUCIMA coll. – FP5)

Assuming fast readout and moderate cooling, 1MRad can be tolerated. Technology improvements for room temperature operation under study (Mi11,15)

Status: Tolerance to neutron irradiation

Beam test on MIMOSA9 irradiated with 10¹¹ n_{eq}/cm² (1MeV)

20 µm pixel pitch, -20°C, 3.4 x 4.3 µm² diodes

Equivalent to 10 years of operation at the ILC:

- Efficiency: 99.97 +/- 0.02 %
- No obvious reduction in charge collection
- No obvious increase of noise (-20°C)

were observed.

S/N and detection efficiency remain excellent.

10¹²n_{eq}/cm² has also been tested with very good results

Status: Resistance against electron doses

Beam test on MIMOSA9 irradiated with 10¹³ e⁻/cm² (~10 MeV)

Equivalent to \blacklozenge 5 years of operation in the ILC (with safety factor 3):

- Detection efficiency = 99.4 + 0.2 %
- Charge collection slightly degrades
- Noise slightly increases (-20°C).

S/N and detection efficiency remain excellent

Fast readout speed, the inner layers

Standard approach for MAPS:

The design concept for the ILC inner layers:

Goal: A readout time of 3 25µs for the ILC

MIMOSA8, a MAPS with on - pixel CDS

MIMOSA8

- TSMC 0.25µm process (8µm epi)
- 128 x 32 pixel
- On pixel CDS
- On chip discriminators
- fully parallel readout
- 20µs readout time (128 pixels)

Preliminary results

- Signal: ~50-110 µV/e⁻
- Noise: ~ 13-18 e⁻ (Pixel) ~ $3-8e^{-}$ (Dispersi
 - ~ 3- 8 e^{-} (Dispersion)
- CDS: OK
- Pedestal Correction: OK

MIMOSA8: Discriminator tests

MIMOSA8: Integrated CDS + Discriminator

Next steps: Production of ADCs

- 4 bit seem most adapted for the MAPS on chip ADCs
- Several dedicated designs are under study: 2 ramp Wilkinson ADC, flash ADC, semi flash ADC, etc.
- Institutes involved in this development: IReS (Strasbourg), LPCC (Clermont-Ferrand), LPSC (Grenoble), Dapnia (Saclay)

Status: First submissions are planned for September

Moderate readout speed: The outer layers

Basing on the FAPS-approach proposed by R. Turchetta:

Within a bunch train:

- Integrate charge with short integration time
- Save charge in analogue memory cells in the pixel (capacitors)

Readout memory cells slowly between the bunch trains.

- + Simpler readout due to reduced data flux
- + Low complexity with respect to previous approach
- Number of memory cells is limited by the size of the capacitor
- This limits the readout speed (frames per buch-train)

Most probably too slow for the inner layers but ok for the outer ones

MIMOSA-12: Multi memory cell pixels

100 fF capacitor (memory cell)

Mimosa-12 pixel

MIMOSA-12:

- AMS 0.35 µm high resistivity
- 4 capacitors / pixel (35 µm pitch)
- 6 sub-arrays pixels with 50, 100, 200 fF capacitors 2 different amplifiers 1 clamping architecture
- 6 test structures (incomplete pixels to test components)

MIMOSA-12: Multi memory cell pixels

Very first tests with an oscilloscope:

MIMOSA-12: Multi memory cell pixels

Flexible Active Pixel

10 memory cell per pixel
28 transistors per pixel
20 μm pitch

40x40 arrays

Design for the Vertex detector at the International Linear Collider

Pulses LED test

FAPS source test

- Source test
- Correlated Double Sampling readout (subtract S_{cell 1})
- Correct remaining common mode and pedestal
- Calculate random noise
 - Sigma of pedestal and common mode corrected output
- Cluster definition
 - Signal $>8\sigma$ seed
 - Signal > 2σ next
- Note hit in cell *i* also present in cell i+1.
- S/N_{cell} between 14.7±0.4 and 17.0±0.3

Other development lines

MIMOStar2:

- 128x128 pixels, 30µm pitch,
- 4ms readout time (serial readout).
- Optimized for Star running conditions (+40°C)
 Status: To be tested

MIMOSA11:

- 4x42x42 pixels, 30µm pitch, serial readout.
- Driven by requirements of FAIR/CBM
- Optimized for radiation tolerance >>1MRad
- Status: Promising beamtest has been done.

Radiation tolerance under study

MIMOSA15:

- Even more radiation tolerant pixels then in MI-11.
- Pixels with optimized clamping.
- Pixels with new sensors in current mode
- Pixels optimized for electron microscopes*
- Status: Submitted for production

* As proposed by P.Rehak, BNL

CBM @ GSI / Darmstadt Exploration of the nuclear phase space diagram.

www.gsi.de/fair/experiments/CBM

MIMOSA13:

- Readout in current mode
- Optimized readout speed
 Status: To be tested

EUDET telescope:

- Macroscopic prototype
- Digital readout

Status: Planned for 2007

UK-MAPS: Conclusion and

Parametric test sensors used to test new designs, noise, rad hardness MIP detection with good S/N for 3-4 MOS devices, up to >10¹⁴ p cm⁻² MIP detection with good S/N for FAPS

Beam test on RAL_HEPAPS2 (3/4MOS, FAPS, irradiated sensors) \rightarrow under study

RAL_HEPAPS4. Large sensor (~1k * 384), rad-hard, high speed (5 MHz per row) \rightarrow in production

Future: Working with LCFI to investigate in-pixel storage architecture (FAPS) for the ILC

Summary and Conclusion

Radiation doses on the ILC- VTX – detector (3 years):

- ③ $3x10^{10} n_{eq}$ /cm² due to neutron gas
- ③ $6x10^{12} e^{\pm} / cm^2$ due to beamstrahlung (2x10¹¹ n_{eq}/cm²)
- ③ Ionising damage: ③ 150 kRad

Radiation hardness of CMOS-Sensors:

- > $10^{12} n_{eq}/cm^2$ against neutrons
- > 10^{13} e/cm² against 10 MeV electrons
- > 1 MRad against soft X Rays

CMOS sensors stand ILC radiation doses, even if they happen to be much above the MC-predictions*.

* So far with moderate cooling, R&D under way to operate safely at room temperature.

Performances with intelligent pixels (CDS => more noise) still to be assessed

Summary and Conclusion

Readout speed requirements:

- ~ 25 μ s for the inner layer, ~ 50 μ s in the second one
- < 200 µs for the outer layers

Readout speed of CMOS-Sensors:

Detectors with integrated data sparsification:

- ~ 20 μs reached with Mi8 (128 pixels/col, On-chip CDS and discri.)
- Very promising results for S/N and discriminator function
- Beam test foreseen in September
- ADC-designs now under study (first submissions planned in Sept.)

Detectors relying on FAPS approach (On-pixel memory cells):

- A first detector has been built.
- Analogue and digital structures work.
- First hits were seen (prove of principle) on oscilloscope.
- Refined tests are under preparation

Design of a fast architecture is on a good way (=> EUDet 2007).

Thank you

MIMOSA V

1 MegaPixel, resolution $< 2\mu m$

MIMOSA8 (fck = 7.5MHz, Vth = +6mV)

A working hypothesis: **!!**Pixel without RESET-Transistor stays OK!! 3,3V Output 3,3V Reset SiO₂ non irrad. SiO₂ irradiated N P+Charge Р reflectors **P**+ \mathbf{P} + • Reset transistor + positive charge create locally high fields. • P-Well barrier gets depleted.

• Parasitic charge collection by the Reset-Transistor.

Result on A0, Sub1 after 23kRad

What stands MAPS for?

CMOS – Monolithic Active Pixel Sensors

Monolithic:

Read-out electronics and sensors are integrated on the same substrate.

Active Pixel :

An amplifier is integrated into each pixel

<u>Sensor</u>

MAPS were developed for visible light applications by industry. MAPS are produced with cheap standard CMOS-processes.

The operation principle of MAPS

Sensor design:

A Minimum Ionising Particle creates ~80 e⁻/h-pairs per

µm in Si

The operation principle of MAPS

The operation principle of MAPS

MIMOSA8: Analogue tests with ⁵⁵Fe source

Preliminary results

- Signal: ~50-110 µV/e⁻
- Noise: ~ 13-18 e⁻ (Pixel)
 - ~ $3-10 e^{-}$ (Dispersion)
- CDS: OK
- Pedestal Correction: OK

In collaboration with CEA/DAPNIA

See also: Y. Degerli et al, Proc. of the 2004 IEEE NSS conference, Roma

Outline

33 million pixels in a boxWhich performances are reached?

The vertex detector concept

- A short reminder
- Requirements on readout speed
- Requirements on radiation hardness

Radiation hardness

- State of the art
- Recent results

Readout speed

- The problem
- A concept for fast MAPS
- Achievements and milestones

A MIMOSA5 Wafer 33 x 1MPixel 120µm thickness