

LCFI Detector Studies

Snowmass 2005, VTX WG

Joel Goldstein

CCLRC Rutherford Appleton Laboratory

For the LCFI Collaboration

Sensor Research

1. Column Parallel CCDs

- Focus so far building on past experience
- Readout during bunch train
- Clock drive major challenge

2. Storage Sensors

- Increased robustness
- Reduced driver requirements
- ISIS and FAPS technologies

Column Parallel CCD

- Separate amplifier and readout for each column
- 50 MHz clock rate

Column Parallel CCD

- Separate amplifier and readout for each column
- 50 MHz clock rate

 $\begin{array}{l} \textbf{Column Parallel CCD} \\ Readout \ time = (N+1)/F_{out} \end{array}$

• Clock drive is real challenge

Prototype CP CCD

CPC1 produced by E2V

Two phase operation

Metal strapping for clock

2 different gate shapes

3 different types of output

2 different implant levels

>Clock with highest frequency at lowest voltage

CPC1 Results

- Noise ~ 100 electrons
 (60 after filter)
- Minimum clock ~1.9 V

- Maximum frequency > 25 MHz
 - inherent clock asymmetry

CP Readout ASIC

CPR1 designed by RAL ME Group

- IBM 0.25 μm process
- 250 parallel channels with 20 μm pitch
- Designed for 50 MHz
- Data multiplexed out through 2 pads

Bumped Assemblies

- Bonding by VTT, Finland
- Bump yield very high
- Some whole chip failures
 - Not fully understood

Testing Results

Charge Amplifiers
(inverting)

- Charge amplifiers work
- Negligible noise from CPR
- Column parallel operation demonstrated

- No signal in ~20% of voltage channels
- Readout chip very sensitive to timing and bias issues
- Gain decrease towards centre of chip

Next Generation: CPC2

• Double metal now available from E2V

- Symmetric clock design
- "Busline-free" option
- Compatible with old and new readout chips

CPC2 Production

- Dedicated batch at e2v
- 3 sizes of CPCCD
 - up to 92 mm active length
- First wafers in DC probing
- Wafers include 16×16 ISIS

Next Generation: CPR2

Output

Sparsification & Multiplexing

Cluster Finding Binary Conversion

5-bit ADC

Preamp Input

12

CPR2 Testing

- Cluster finding logic and sparse readout
- Improved amplifiers and ADCs
- Increased robustness

In-situ Storage Imaging Sensor

- Orders of magnitude increased resistance to RF
- Much reduced clocking requirements (*readout ~1MHz*)
- Combination of CCD and CMOS technology on small pitch

Flexible Active Pixel Sensors

FAPS architecture

- First prototypes in 2004
- Pixels 20x20 μm²
- 3 metal layers
- 10 storage cells per pixel

Plans

- Test and evaluate 2nd generation CPCCD & readout
- Test first ISIS prototypes
- Design 3rd generation CPCCDs and drivers
- Develop ISIS and FAPS test structures

Backup Slides

Baseline Vertex Detector

- 800 Mchannels of $20\times20~\mu m$ pixels in 5 layers
- Optimisation:
 - Inner radius (1.5 cm?)
 - Readout time (50 μs?)
 - Ladder thickness $(0.1\% X_0?)$

Sensors: The Challenge

Beam Time Structure:

What readout speed is needed?

- Inner layer 1.6 MPixel sensors
- Once per bunch = 300ns per frame : *too fast*
- Once per train $\sim 200 \text{ hits/mm}^2 : too slow$
- 10 hits/mm² => 50µs per frame: just right

(Fastest commercial imaging ~ 1 ms/MPixel)

Power dissipation – gas volume cooling

Bumping Failures

- Short between CCD substrate and chip ground
- Possible mechanical damage

Busline Free CCDs

- Clock signals transmitted via distributed drive planes
 - Faster propagation
 - More uniform

CCD Drivers

- Clock drivers are a big challenge
 - Working on air core PCB transformers
 - Long-term solution more likely to be IC with local storage

In-situ Storage Imaging Sensors

- 1. Charge collection similar to CCD or CMOS
- 2. Charge transferred into local CCD array every 50µs
- 3. Local CCD array clocked at 20 kHz
- 4. Source follower for every pixel
- 5. Read out one row at a time
 - Still column parallel