Detector thinning technology

L. Andricek, G. Lutz, R.H. Richter

^aMPI fuer Physik, Semiconductor lab, Munich and

- Introduction/Motivation
- Module Concept
- ThinningTechnology
 - Direct Wafer Bonding
 - Anisotropic deep wet etching
- Diodes on thin Silicon
- Summary and Conclusion

Introduction

- Thinning technology developed for DEPFET option of vertex detector by L.Andricek
- Allows construction of mechanical rigid all silicon modules with thin (50um) active area and thick (300um) frame for mechanical stability
- Relies on wafer bonding technology (MPI für Mikrostrukturphysik, Halle, Germany)
- Processing performed in MPI semiconductor laboratory
- Method has been demonstrated to work very well with thin diodes

Module Concept/Pixel Cell

sensitive area 1st layer module: 100x13 mm², 2nd-5th layer : 125x22 mm² $\rightarrow \sum$ 120 modules

sensitive area thinned to 50 μ m, supported by a 300 μ m thick frame of silicon

Module cross section

Making thin Sensors

Processing thin detectors - Direct Wafer Bonding -

Q.-Y. Tong and U. Gösele " Semiconductor Wafer Bonding " John Wiley & Sons, Inc. \rightarrow annealing at T>1000 °C \rightarrow Si-O-Si bonds

Direct Wafer bonding after Implantation

Bonded wafers (structured implant through BOX):

Direct Wafer Bonding possible, but some voids after annealing!

→ improve surface condition before bonding

infrared transmission pictures from MPI Halle (M. Reiche)

Anisotropic Wet Etching - TMAH -

Tetramethyl Ammonium Hydroxide

Mechanical Dummies

- how thin can we get?? -

Mechanical Dummies

- distortions -

PiN Diodes on thin Silicon

* + 4 Wafers with standard Diodes as a reference *

PiN Diodes on thin Silicon

Type II: pn-junction in bond region

PiN Diodes on thin Silicon - Type I: CV curves, full depletion voltage -

PiN Diodes on thin Silicon - Type I: IV curves -

module in the first layer at TESLA: 13 cm²

→ dark current for the entire thin pixel array would be only 11nA!!!

PiN Diodes on thin Silicon - Type II: IV curves -

Type II: Implants like DEPFET config.

→ about 4 nA @ 5V for the 6.5 cm² diode, including edge generated current

- Work done so far on 100mm Si-wafers in "application" part of our laboratory
- Transferring technology to 150mm wafers in our production line is in progress
- Fabrication of thin DEPFET pixel detectors is planned

Summary and Conclusions

- A thinning technology based on wafer bonding and etch back for radiation sensors with implanted and structured back side was presented.
- $_{\rm 0}$ The sensitive pixel area is thinned to 50 μm and supported by an integrated silicon frame.
- The feasibility of the thinning technology was shown:
 - **Direct wafer bonding** after lithography and implantation is **possible**
 - TMAH (with the appropriate additives) seems to be a good choice for the deep etching
 - Handling of etched wafers and diced thin chips is safe and easy
- IV/CV measurements of diodes on thin silicon are extremely encouraging: reverse current < 1 nA/cm² for large area PiN diodes, including edge generated current.