Material budget study for a CMOS VTX concept

Damien Grandjean Marc Winter

- A reminder of the Vertex Detector constraints
- Material budget assumed for the simulation
- Constraints from beamstrahlung background
- The CMOS vertex detector concept
- Impact of fast readout on material budget
- Simulation of the impact parameter resolution
- Conclusion

Impact parameter resolution :

 $\sigma_{I.P.} = a \ \mu m \oplus b \ \mu m \ /p.sin^{3/2} \theta$ with a < 5 and b < 10

- Very high granularity
- Very thin (minimise multiple scattering)
- As close as possible to the I.P.
- Machine environment : Beamstrahlung
 - o Agressive fast readout ⇒ material budget ?
 - Impact on b parameter ? (BRAHMS simulation)
 - Radiation Hardness

Material budget use in the simulation

- Beam pipe ~ 500 μm thick (TESLA TDR) This corresponds to 0.14% X₀
- Sensor thickness:
 - Aim for \leq 50 μ m Si (use in this simulation)
 - Back thinning tests of Mimosa-5 are running
 - $\circ~$ LBNL : Mimosa-5 chips work after thinning to 50 μm (industrial process)
 - O IReS / Tracit : similar thinning of Mimosa-5 (70 μm today 40 μm)
 - SUCIMA : study for e^- of few keV detection : thinning Mimosa-5 to 15 μ m (no standard process) not yet adapted for m.i.p. detection.
 - 25 μm thick sensors achievable ?
- Detector support structures :
 - Not detailed in this study.
 - Assumption: simple ladder ~ 50 μm C thick

Cooling and operation temperature

- Cooling requirements:
 - Detectors are best performing near 0° C or below
 - Less dark current namely after irradiation
 - Less shot noise
 - Room temperature operation is however not excluded
 - Opto processes and improved structures help to controll dark current
 - First promising results were archived with Mi9, Mi11, ongoing study
- A Light cooling system is studied by DESY, Univ. HH
 - Cooling agent R314a
 - Compressed gas expands in AI pipe (600 μm diameter, 50 μm thick) place under readout electronic part along the ladder : 1.2x10⁻⁴ X₀ in average
 - -12 °C achieved
 - Long term temperature stability is still to be improved

A light cooling system is not yet included in the simulation. The cryostat is use in this study

Constraints from beamstrahlung background

Base line of the detector concept TESLA TDR

- Radius of the inner layer : 15 mm
- readout speed 50 μs
- B = 4T

Question : Is this consistant with beamstrahlung ?

Monte Carlo on beamstrahlung pairs (100 BX):

• 5 hits/mm²/BX at 90° in layer L0

Occupancy (20µm pitch, 50µs readout):

- Cluster multi. (x 5- 10)
- Safety factor (X 3)
- ⇒ Occupancy 5-10 %

Conclusion: < 25 µs readout time is required in L0 and < 50 µs readout time is required in L1

The CMOS Vertex Detector Concept

Based on TESLA TDR geom.

- o 5 concentric layers
- Radii ranging from 15 to 60 mm
- Polar angle coverage |cosθ|~
 0.9 0.95
- But quite different
 - More aggressive readout speed
 - 25 μs for L0
 - 50 μs for L1
 - o massive // processing
 - < 200 μs for L2, L3 and L4</p>
 - \circ \geq 5 memory cells
 - Less pixels : ~ 300 M
 - varied pixel size depending on layer (20 to 40 μm)
 - Low power dissipation
 - P_{mean} < 3 30 W
 (duty cycle =1/200 1/20)

	Layer	Pitch	t _{r.o.}	N _{lad}	N _{pix}	P _{inst} ^{diss}	P _{mean} dis
9	LO	20 µm	25 μs	20	25M	< 100 W	< 5 W
	L1	25 µm	50 μs	26	65M	< 130 W	< 7 W
	L2	30 µm	<200 μs	24	75M	< 100 W	< 5 W
	L3	35 µm	<200 μs	32	70M	< 110 W	< 6 W
	L4	40 μm	<200 µs	40	70M	< 125 W	< 6 W
	total			142	305M	< 565 W	<29 W

SNOWMASS 2005

Impact of fast readout on material budget

Simulation Results : influence of the side band

SNOWMASS 2005

Simulation Results : influence of the radius of L0

TDR TESLA geometry Radius L0 = 1.5 cm

TDR TESLA geometry Radius L0 = 1.8 cm

Summaries and conclusions

Simulations

VTX GEOM	TDR TESLA	TDR TESLA R _{L0} = 18mm	CMOS without side band	CMOS with side band
а	3.6 ± 0.05	3.9 ± 0.05	3.6±0.05	3.6 ± 0.05
b	8.5 ±0.1	9.6 ±0.1	8.4 ±0.1	8.8 ±0.1

- Amount of matter coming from 2 mm electronic side band and overlapping of several ladders:
 - Modest loss in resolution : b parameter grows by few per cent
 - Two reasons :
 - Beampipe material governs b
 - The parameter b grows essentially like square root of thikness material
- Increasing the radius of the inner layer
 - b parameter is lineary dependent of this radius

Next steps:

Simulation still needs to be refined

- More realistic mechanical support
- Cabling
- Light cooling system (if required)
- Optimisation of the VTX geometry for physics
 - Number of layers ?
 - Conical part in forward region ?

Summaries and conclusions /2

Worldwide R&D effort

- Sensor thickness and mechanical support tests
 - Looks to be possible to thin sensor at 50 μm (maybe twice less ?)
 - Very light mechanical support prototypes under test looks very satisfactory
 - but maybe more conservative than expected
- Light cooling system
 - If sensors have low power dissipation and can work around 0° C

Still lot of work to do

- realistic but still a base line
 - pixel conical part ?
 - more realistic mechanical support
 - cabling
 - impact and optimisation of the VTX geometry for physic

CMOS Vertex Detector implemented in BRAHMS

The Beamstrahlung pairs occupancy

Constraints from beamstrahlung background

- Base line of the the detector concept TESLA TDR
 Radius of the inner layer : 15 mm

 - readout speed 50 µs \bigcirc
- Question : Is this consistant with beamstrahlung?
- Beamstrahlung pairs
 - M.C : 5 hits/mm²/BX at 90° in layer L0 Ο
 - Cluster multi. (x 5-10)
 - Safety factor (X 3)
 - Occupancy 5-10 % \Rightarrow
 - dictates the readout speed Ο
 - TESLA TDR : 50 µs for the first layer at 1.5 cm
 - What if BG much superior to M.C. prediction ? Ο
 - increase the radius of the first layer
 - Not a good solution because parameter b linearly \cap dependent of R₁₀
 - parameter a increase too Ο
 - Increase the readout speed : technhology dependent
 - Sensor able to work at high frequency

20/08/2005

The matter inside the CMOS Vertex Detector

- How to have fast readout ?
 - small chip \Rightarrow more ladders than TDR geom.
- CMOS need electronic side band for digital convertion, sparsification and signal extraction
 - techonology limitation
 - amplification and CDS in pixel only
 - o small size of the pixel
 - These caracteristics increase the amount of matter inside the fiducial volume
 - o but there is less matter at small polar angle
- The CMOS sensor could work at < 0° C ?</p>
 - the CMOS could work at ambiant temperature
 - thanks to the OPTO fabication process
 - radiation will increase the dark current
 - work around 0° C to keep high S/N ratio
 - Assume no cryostat needed
- The CMOS VTX implemented in BRAHMS and the impact parameter resolution calculated for different configurations
 - The sensor thickness is 50 μ m supported by carbon fibre structure of 50 μ m thick (LBNL tests) ~ 0.08 % X₀ (optmisitic ?)

100 mm

What are our components ? /2

Mechanical support:

LCFI studies semi-supported sensor RVC foam : $3.1mm = 0.05\% X_0$ Silicon Carbide foam : $540 \mu m = 0.05\% X_0$

LBNL prototype for STAR upgrade carbon fiber and kapton (~ 0.03 % X₀)

A concept of a vertex detector for the ILC relying on CMOS-sensors Damien Grandjean Marc Winter

- Vertex Detector reminder
- How to decrease material budget ?
- Constraints from beamstrahlung background
- Study example : the CMOS Vertex Detector concept
 - The matter inside the CMOS Vertex Detector
 - Simulation Results
- Summaries and conclusions