Snowmass 2005 ALCPG Workshop August 21, 2005

Physics Benchmarks for the Vertex Tracker

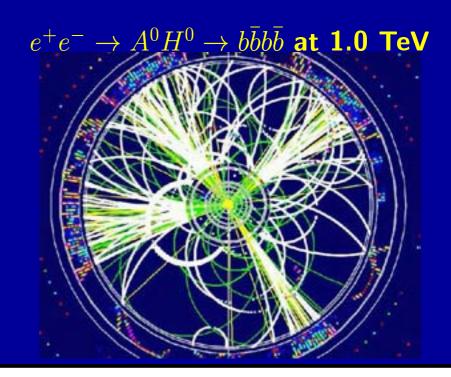
Marco Battaglia

UC Berkeley and LBNL

$ee ightarrow Z^0 h^0 ightarrow \ell^+ \ell^- X$	0.35	$\mathrm{M_{recoil}}$, σ_{Zh} , BR_{bb}	$\delta\sigma_{Zh}=$ 2.5%, $\delta { m BR}_{bb}=$ 1%	T
$ee ightarrow Z^0 h^0$, $h^0 ightarrow bar{b}/car{c}/ au au$	0.35	Jet flavour , jet $(E, ec p)$	$\delta \mathrm{M}_h{=}$ 40 MeV, $\delta(\sigma_{Zh} imes \mathrm{BR}){=}1\%/7\%/5\%$	V
$ee ightarrow Z^0 h^0$, $h^0 ightarrow WW^*$	0.35	M_Z , M_W , σ_{qqWW^*}	$\delta(\sigma_{Zh} imes \mathrm{BR}_{WW^*}) {=} 5\%$	C
$ee ightarrow Z^0h^0/h^0 uar u$, $h^0 ightarrow \gamma\gamma$	1.0	$M_{\gamma\gamma}$	$\delta(\sigma_{Zh} imes \mathrm{BR}_{\gamma\gamma}) = 5\%$	С
$ee ightarrow Z^0h^0, h^0 uar u$, $h ightarrow \mu^+\mu^-$	1.0	$M_{\mu\mu}^{+}$	5σ Evidence for $m_h=1$ 20 GeV	Т
$ee ightarrow Z^0 h^0$, $h^0 ightarrow \mathrm{i} nvisible$	0.35	σ_{qqE}	5σ Evidence for $\mathrm{BR_{invisible}}{=}2.5\%$	С
$ee ightarrow h^0 u ar{ u}$	0.5	$\sigma_{bb u u}$, M_{bb}	$\delta(\sigma_{ u uh} imes \mathrm{BR}_{bb})=1\%$	С
$ee o t ar{t} h^0$	1.0	σ_{tth}	$\delta g_{tth}{=}5\%$	С
$ee ightarrow Z^0h^0h^0$, $h^0h^0 uar u$	0.5/1.0	σ_{Zhh} , $\sigma_{ u u hh}$, M_{hh}	$\delta g_{hhh}{=}20/10\%$	С
$ee \rightarrow W^+W^-$	0.5		$\Delta \kappa_{\gamma}, \lambda_{\gamma} = 2 \cdot 10^{-4}$	V
$ee o W^+W^- uar{ u}/Z^0Z^0 uar{ u}$	1.0	σ	$\Lambda_{*4}, \Lambda_{*5}=$ 3 TeV	С
$ee o \tilde{e}_R^+ \tilde{e}_R^-$ (Point 1)	0.5	E_{e}	$\delta m_{ ilde{\chi}^0_1}{=}$ 50 MeV	T
$ee ightarrow ilde{ au}_1^+ ilde{ au}_1^-$, $ ilde{\chi}_1^+ ilde{\chi}_1^-$ (Point 1)	0.5	E_{π} , $E_{2\pi}$, $E_{3\pi}$	$\delta(m_{ ilde{ au}_1}^{ ilde{ au}_1}-m_{ ilde{\chi}_1^0}){=}200$ MeV	Т
$ee ightarrow ilde{t}_1 ilde{t}_1 ext{ (Point 1)}$	1.0		$\delta m_{\tilde{t}_1} = 2 \text{ GeV}$	
$ee o ilde{ au}_1^+ ilde{ au}_1^-$, $ ilde{\chi}_1^+ ilde{\chi}_1^-$ (Point 3)	0.5		$\delta m_{ ilde{ au}_1}{=}1$ GeV, $\delta m_{ ilde{\chi}^0_1}{=}500$ MeV,	F
$ee ightarrow ilde{\chi}^0_2 ilde{\chi}^0_3$, $ ilde{\chi}^+_1 ilde{\chi}^1$ (Point 2)	0.5	M_{jj} in $jjE\!\!\!\!/$, $M_{\ell\ell}$ in $jj\ell\ell E\!\!\!\!/$	$\delta\sigma_{\chi_2\chi_3}=$ 4%, $\delta(m_{ ilde{\chi}^0_2}-m_{ ilde{\chi}^0_1})=$ 500 MeV	С
$ee ightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- / \tilde{\chi}_i^0 \tilde{\chi}_i^0$ (Point 5)	0.5/1.0	ZZE,WWE	$\delta\sigma_{ ilde{\chi} ilde{\chi}}$ $=$ 10%, $\delta(m_{ ilde{\chi}^0_3}-m{ ilde{\chi}^0_1})=$ 2 GeV	С
$ee o H^0 A^0 o b ar{b} b ar{b}$ (Point 4)	1.0	Mass constrained M_{bb}	$\delta m_A^{\lambda\lambda} = 1 \; GeV$	С
$ee ightarrow ilde{ au}_1^+ ilde{ au}_1^-$ (Point 6)	0.5	Heavy stable particle	$\delta m_{ ilde{ au}_1}$	T
$\chi_1^0 \rightarrow \gamma + \cancel{E}$ (Point 7)	0.5	Non-pointing γ	$\delta c au = 10\%$	С
$ ilde{\chi}_1^\pm ightarrow ilde{\chi}_1^0 + \pi_{soft}^\pm$ (Point 8)	0.5	Soft π^\pm above $\gamma\gamma$ bkgd	5σ Evidence for $\Delta ilde{m}{=}$ 0.2-2 GeV	F
$ee ightarrow t \overline{t} ightarrow 6 \ jets$	1.0		5σ Sensitivity for $(g-2)_t/2 \leq 10^{-3}$	V
$ee ightarrow far{f} \ (f=e,\mu, au;b,c)$	1.0	$\sigma_{far{f}}$, A_{FB} , A_{LR}	5σ Sensitivity to $M(Z_{LR})=\overline{7}$ TeV	V
$ee ightarrow \gamma G$ (ADD)	1.0	$\sigma(\gamma+E)$	5σ Sensitivity	С
$ee \rightarrow KK \rightarrow ff \text{ (RS)}$	1.0			Т

Benchmarking Vertexing

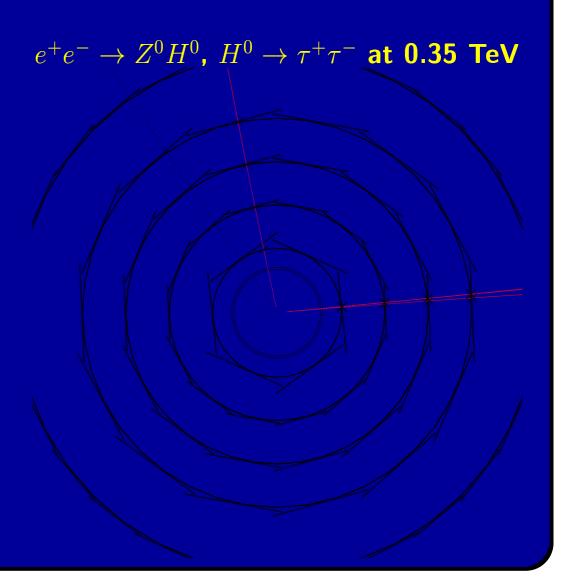
$$\left(e^+e^- o Z^0H^0$$
, BR $(H^0 o car c)$, BR $(H^0 o au^+ au^-)$ at $\sqrt s{=}$ 0.35 TeV $ight)$


- \diamondsuit charm tagging in dominant b background;
- \Leftrightarrow 3-prong vertexing for collimated τ decays;

$$\left(e^+e^-
ightarrow Z^0H^0H^0$$
 , $H^0
ightarrow bar{b}$ at $\sqrt{s}=$ 0.5 TeV)

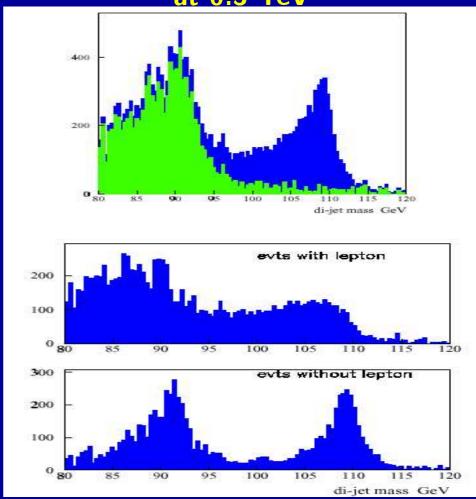
 \diamondsuit highly efficient b tagging in significant heavy flavour multi-jet background;

$$fe^+e^- o A^0H^0 o bar bbar b$$
, at $\sqrt s=1.0$ TeV


 \Leftrightarrow highly efficient b tagging for dense, collimated jets in democratic flavour environment;

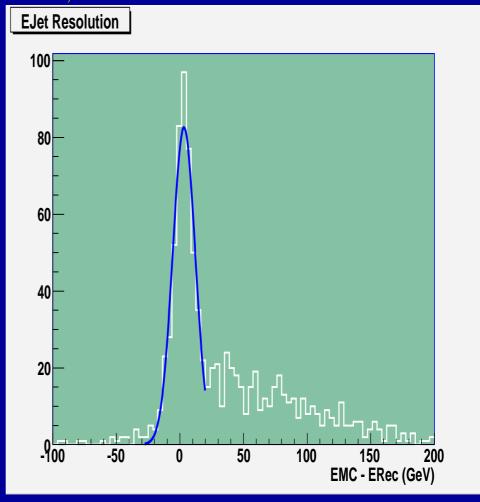
Benchmarking Impact Parameter

$$\left[e^+e^- o Z^0H^0$$
, BR $(H^0 o au^+ au^-)
ight]$


- \Leftrightarrow Determination of $\tau\tau H$ coupling essential for establishing Higgs mechanism in lepton sector;
- \Leftrightarrow Large 1-prong τ decay branching fraction stresses impact parameter determination for single tracks;
- ♦ Single secondary isolated particle tagging.

$$\overline{(e^+e^- o Z^0H^0,\ H^0 o bar b)}$$

- \Leftrightarrow Detailed study of Higgs couplings to fermions and gauge bosons, requires use of inclusive 4-jet events where $H \to b\bar{b} \to \ell X$ will distort the M_{JJ} invariant mass distribution;
- Important to tag secondary leptons in jets to apply corrections and determine b direction from vertexing information in these cases;
- \diamondsuit Single secondary particle tagging in b jet.


 $e^+e^- o H \nu \bar{\nu}$ and $e^+e^- o Z Z \nu \bar{\nu}$ at 0.5 TeV

$$\overbrace{e^+e^- o\chi^0_2\chi^0_3,~\chi^0_3 o\chi^0_1Z^0},~Z^0 o bar{b},~B o X\ell
u$$
 at $\sqrt{s}=1.0~{\sf TeV}$

- \Leftrightarrow Significant decay branching fractions to real Z^0 , requires reconstruction of E_{Z^0} to determine the χ_3 and χ_4 mass and the μ parameter, which is essential in the determination of $\Omega_\chi h^2$;
- \Leftrightarrow Energy reconstruction distorted by $B \to X \ell \nu$ decays which need to be identified and corrected;
- \Leftrightarrow Single secondary particle tagging in b jet.

$\chi^0_{3,4} ightarrow \chi^0_1 Z^0$, $Z^0 ightarrow q ar q$ at ${f 1.0}$ TeV

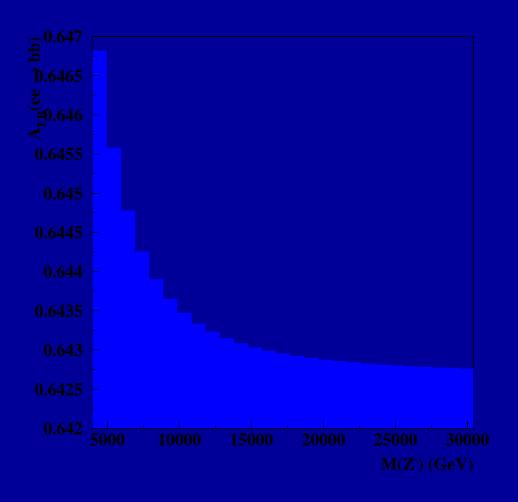
Benchmarking Vertex Charge

$$\left[e^+e^-
ightarrow Z^0H^0H^0$$
 , $H^0
ightarrow bar{b}
ight]$

- Aid three boson reconstruction by reducing combinatorial with vertex charge determination;
- ♦ Jet tagging and vertex charge reconstruction in multi jet final state with significant heavy flavour background.

$$e^+e^- o H^+H^-$$
, $H o tb$

 \Leftrightarrow SUSY loop contributions $(\tilde{t}, \tilde{b}, \tilde{g})$ may induce sizeable CP asymmetry in heavy Higgs boson decays:


$$\delta CP = \frac{\Gamma(H^- \to b\bar{t}) - \Gamma(H^+ \to t\bar{b})}{\Gamma(H^- \to b\bar{t}) + \Gamma(H^+ \to t\bar{b})}$$

♦ Jet tagging and vertex charge reconstruction in very high jet multiplicity.

$\left[e^+e^ightarrow far{f}$, f= au , b , c at $\sqrt{s}=1$.0 TeV $\left[e^+e^ightarrow f$

- ♦ Electro-weak precision data sensitive to New Physics (New Gauge bosons, ED, contact interactions) beyond the ILC and LHC kinematic reach;
- $\Leftrightarrow A_{FB}$ and A_{LR} manifest the largest sensitivity and require jet flavour tagging and charge determination;
- \Leftrightarrow Jet charge techniques have already been successfully employed, but separation is modest, vertex charge would offer cleaner B^+/B^- separation and displaced i.p. ℓ and K can boost separation of B^0/\bar{B}^0 ;
- ♦ Jet tagging and vertex charge reconstruction in dense, highly collimated jets with democratic flavour composition.

$e^+e^- o bar{b}$ at 1 TeV

