

Study of incoherent e⁺e⁻ background in the Vertex Detector with GuineaPig

Snowmass, August 2005

C. Rimbault, LAL Orsay

Study of incoherent e⁺e⁻ background in the Vertex Detector with GuineaPig

1. GuineaPig¹/CAIN²/BDK³ comparison

GuineaPig & CAIN : beam-beam simulation BDK : 4 fermions interaction dedicated code, including all EW diagrams (but no radiative corrections)

2. Impact of beam parameter sets on microVertex Detector background

¹ D. Schulte

² K. Yokoya

³ Berends, Daverveldt, Kleiss

Incoherent Pair Creation Processes

Equivalent photon spectrum, associated to a virtuality parameter, Q

Simulation inputs

GuineaPig & *Cain* : Tracking¹, Beam Size Effect², $Q^2_{max} = s/4$, m_e^2 BDK: $e^+e^- \rightarrow e^+e^-e^+e^-$, $s_{min} = 4m_e^2$ used as a reference for the LL process $E_{min} = 5$ MeV ; Beam parameter set: USSC 500 GeV ; VD: $r_1 = 15$ mm, B=4T (LDC)

¹*Tracking* : Deflection of low energy pairs due to the field of the opposite beam. ²*Beam Size Effect*: Reduction of cross section due to the position uncertainty for the virtual photons with low Pt.

Deflection of the pairs Pt vs θ

Pt > 5 MeV/c mostly due to electromagnetic deflections

GuineaPig / CAIN

Qualitative agreement between Guinea-Pig and CAIN

Landau-Lifshitz : Comparison with BDK

Very good agreement for Guinea-Pig and BDK

$e^+ + e^-$ production (effective) cross sections E > 5 MeV

σ(mb)	Guinea-Pig Q ² _{max} =s/4	$\begin{array}{c} \text{CAIN} \\ \text{Q}_{\text{max}}^2 = \text{m}_{e}^2 \end{array}$	BDK	(GP-CAIN)/GP
All IPC particles	101 58.0	89.5 50.7	-	0.12
Breit- Wheeler	1.01 <i>1.05</i>	1.11 <i>1.04</i>	-	0.01
Bethe- Heitler	66.3 37.7	61.7 <i>34.5</i>	-	0.07
Landau- Lifshitz	33.9 19.2	26.7 15.2	31.8	0.21

without & with Beam Size Effect

IPC particles reaching the VD (LDC) **Pt** vs θ

 $Pt > 5 MeV \& \theta > 20 mrad$

VD bkg does not come from magnetic deflection

Events reaching the VD e

effective $\sigma(\mu b)$

σ (μb)	GuineaPig Q ² _{max} =s/4	CAIN $Q^{2}_{max}=m_{e}^{2}$	BDK	(GP-CAIN)/GP
All	60.5 ± 6.0 64.1 ± 5.9	36.5 ± 4.5 37.4 ± 4.5	-	~ 0.41 ± 0.12
BW	10.3 ± 2.4	7.0 ± 2.0	_	~ 0.27 + 0.33
	8.2 ± 2.1	6.4 ± 1.9	-	
BH	20.5 ± 3.3 26.6 ± 3.8	10.0 ± 3.0 20.9 ± 3.3	-	$\sim 0.20 \pm 0.20$
TT	29.7 ± 4.0	13.4 ± 2.7	37.5 ± 5.3	$\sim 0.60 \pm 0.18$
	29.3 ± 4.0	10.2 ± 2.3	-	

without & with Beam Size Effect

Origin of the difference GuineaPig / CAIN : Q^2_{max}

$Q_{max}^2 = m_e^2$	IPC parti	cles o(mb)	IPC particles in VD $\sigma(\mu b)$		
	GuineaPig	CAIN	GuineaPig	CAIN	
All	51.8	50.7	32.0 ± 4.3	37.4 ± 4.5	
BW	1.09	1.04	5.7 ± 1.8	6.4 ± 1.9	
BH	35.2	34.5	16.5 ± 3.1	20.9 ± 3.3	
LL	15.6	15.2	9.7 ± 2.4	10.2 ± 2.3	

Same virtuality limit, same results : agreement between GP & CAIN at low virtuality

The photon virtuality spectrum in BDK

between GuineaPig & BDK both at low and large virtuality **BKD prediction at low virtuality:** $\sigma_{prod} = 24 \text{ mb}$; $\sigma_{VD} = 12 \text{ µb}$ ~ CAIN results

Main results on IPC GuineaPig/CAIN/BDK comparison

• Relative difference between GuineaPig & CAIN:

All IPCe : 12%	LL IPCe : 21%
All VD : 41%	LL VD : 60%

due to the difference in photon virtuality upper limit.

- \bullet At low virtuality (Q<me) : agreement between GuineaPig & CAIN and BDK for LL process
- Very good agreement between GuineaPig and BDK
- m_e as a upper virtuality limit is too small
 - → GuineaPig prediction is the better one

Impact of beam parameter sets on IPC VD background

• microVertex Detector: 5 cylindrical layers

 $l_1 = 10 \text{ cm}$, $l_{2,5} = 25 \text{ cm}$

 $r_1 = 14, 15, 20 \text{ mm}, r_2 = 26 \text{ mm}, r_3 = 37 \text{ mm}, r_4 = 48 \text{ mm}, r_5 = 60 \text{ mm}$

- B = 3, 4, 5T (GLD, LDC, SiD)
- 5 beam param. sets : *Nominal, Low Q, Large Y, Low P, High Lum* (ILC WG1, T. Raubenheimer, D. Schulte, K. Yokoya)
- GuineaPig

Impact of beam parameter sets on VD background for $r_1 = 15 \text{ mm}$

θ (rad)

Impact of beam parameter sets on VD background

	B ; r (T;mm)	tesla	nominal	lowQ	largeY	lowP	highLum
L_{bx} [µb ⁻¹]		1.9	1.5	0.7	1.1	2.8	3.4
	3; 14	560	420	440	480	770	19400
	3; 15	460	360	370	430	550	4800
	3; 20	250	240	210	250	290	650
N _{incVD} /trai	4; 14	300	270	250	280	350	920
п [10 ³]	4; 15	270	240	220	250	290	680
[=~]	4; 20	150	150	120	160	170	340
	5; 14	190	190	160	200	220	490
	5; 15	160	160	120	170	190	390
	5; 20	90	90	80	100	110	230

highlum Bkg = 2.7 nominal Bkg

Impact of beam parameter sets on VD background

	B; r (T;mm)	tesla	nominal	lowQ	largeY	lowP	highLum
L_{bx} [µb ⁻¹]		1.9	1.5	0.7	1.1	2.8	3.4
	3; 14	560	420	440	480	770	19400
	3; 15	460	360	370	430	550	4800
	GLD	250	240	210	250	290	650
N _{incVD} /train	4, 14	300	270	250	280	350	920
[10 ³]	LDC	270	240	220	250	290	680
	4; 20	150	150	120	160	170	340
	SiD	190	190	160	200	220	490
	5; 15	160	160	120	170	190	390
	5; 20	90	90	80	100	110	230

GLD ~ LDC

SiD ~ 25 % less than LCD/GLD

Comparison with GLD occupancy tolerance

Tolerance : 10^4 hits/cm²/train Using : Nb hits/particle = 3 rough estimate Surface L1 = 2cm* 10cm*2pi = 126 cm²

GLD	tesla	nominal	lowQ	largeY	lowP	highLum
N _{incVD} /train [10 ³]	250	240	210	250	290	650
N _{hits} /cm²/ train	5950	5700	5000	5950	6900	15500

• high Lum is beyond the occupancy tolerance

Comparison with LDC occupancy tolerance

Tolerance : 3 hits/cm²/bx (TDR) Using : $\overline{\text{Nb}}$ hits/particle = 3 rough estimate Surface L1 = 1.5cm* 10cm*2pi = 94 cm²

LDC	tesla	nominal	lowQ	largeY	lowP	highLum
N _{incVD} /bx	94	86	39	90	220	240
N _{hits} /cm ² / bx	3.0	2.7	1.2	2.9	7.0	7.7

• high Lum & lowP are beyond the occupancy tolerance

Comparison with SiD occupancy tolerance

Tolerance : ? hits/cm²/train not communicate Using : \overline{Nb} hits/particle = 3 rough estimate Surface L1 = 1.4cm* 10cm*2pi = 89 cm²

SiD	tesla	nominal	lowQ	largeY	lowP	highLum
N _{incVD} /train [10 ³]	190	190	160	200	220	490
N _{hits} /cm²/ train	6400	6400	5400	6700	7400	16500

Summary

• Incoherent pair VD background : CAIN prediction is 40% less than GuineaPig one

GuineaPig prediction is the better one

- Be careful with pair accumulation region after deflection
- Incoherent VD bkg : GLD ~ LDC, SiD ~ 25% less
- HighLum → constraints on VD design (B, radius, readout) Incompatible with present GLD & LDC concepts
- New proposed HighLum option (A. Seryi) → potentially better
 →to be studied...
- reference: EUROTeV-Report-2005-016-1