Test Beam: Calorimetry

Vishnu V. Zutshi
NIU/NICADD
General Comments

• LC calorimetry R&D: a diverse effort
• Apologies for missing out or inadvertently misrepresenting any particular project
• Most efforts are working with the Particle Flow framework in mind
• Schedules are tentative and reflect the technical assessment of groups and may not reflect the funding realities
Goals

Establish the feasibility of the respective technologies.

Validate and tune hadronic shower Monte Carlo’s. This is essential for calorimeters hoping to use particle flow

Refine detector concepts
CALICE Si-W ECal

LLR,
LAL, Orsay
Imperial College
Si-W ECAL

Prototype of this area

For dense highly segmented calorimetry
Minimize dead zones
Minimize readout gaps (small Moliere R)
Prototype Geometry

30 layer prototype
3 independent W-CFi structures
(1.4, 2.8 and 4.6mm W plates)
Detectors can be slid in the gaps

Active area: 3x3 wafers
Each wafer has 36 1cm x 1cm pads
Total channel count ~10k
Exposure to beam

Test in Feb. 2005 at DESY
14 layers (~ 3k channels)
20x10^6 events collected

Longer run with full detector in 06
Readout integration R&D continues
Si-W ECal {Korea}

Ewha Univ.
Korea Univ.
Kyoungpook National Univ.
SungKyunKwan Univ.
Yonsei Univ.
Si-W ECal

Obtained 28%/sqrt(E)
Further analysis going on
R&D for thinner layers and
AC-coupled sensors in progress
Si-W ECal {US}
BNL,
UC-Davis
Univ. of Oregon
SLAC
Si-W ECal

Si-W Calorimeter Concept

Transverse Segmentation ~5mm
30 Logitudinal Samples
Energy Resolution ~15%/E^{1/2}

1.25m

Rolled Tungsten
Circuit Board
Silicon Wafers
Layer Assembly

2/7/2006
V. Zutshi, Snowmass 2005
Readout Electronics

1 chip/wafer
Chip bump-bonded to wafer
Status and Plans

1 wafer/layer (750 pixels)
30 layers
2.5 and 5 mm Tungsten plates

64-channel chip submission soon
One layer beam test in 2006
Full assembly in mid-2007
Si-Scin-Pb ECal

Como
ITE-Warsaw
LNF
Padova
Trieste
LCcal

45 layers
25cm x 25cm x 0.3cm Pb
25 (5cm x 5cm) Scint. Tiles
3 Si pads at 2, 6 and 12 X₀
Status and Plans

- The LCcal prototype has been built and fully tested.
- Energy and position resolution as expected: $\sigma_E/E \sim 11.5\% \sqrt{E}$, $\sigma_{\text{pos}} \sim 2$ mm (@ 30 GeV)
- Light uniformity acceptable.
- e/π rejection very good ($<10^{-3}$)

Looking to combined tests with HCal
Scin-W ECAL

Colorado
Scint. ECal

\(\frac{1}{2} - \frac{3}{4} X_0 \) Tungsten
5x5 cm\(^2\) tiles WLS fiber readout
Cells in alternate layers are offset

Starting to work with SiPM's
Working with Fermi/NIU to produce extruded scintillator with tight tolerances
Scintillator HCal

DESY
Imperial College
ITEP
JINR
LAL
LPI
MEPhI
NIU/NICADD
Scint. HCal

~1000 pixels on 1mm x 1mm
Bias voltage ~ 50-60V
Gain ~ 10^6
Quantum x geom ~ 12-15%

2/7/2006 V. Zutshi, Snowmass 2005
Prototype Geometry

30 layers

8 layers
Status and Plans

In the construction and assembly phase
Hoping to see beam in mid-2006
10 RPC’s built for studying no. of gaps, resistivity, chamber configuration and size.
Status and Plans

40 layers
1cm x 1cm pads
64 channel custom ASIC
(1-bit readout)
Also used for GEM-based HCal prototype

Hope to be ready for beam in 2006-07
RPC HCal (Russia)

IHEP Protvino
RPC-based HCal

Was done

1. Chamber R@D itself
2. Tests of 1m2 RPC plane with strips
 - 1.2 mm monogap glass RPC, 6 mm thickness
 - robust design with 2mm steel caps
 - efficiency ~94 %, nonuniformity ~2%
3. Tests of RPCs in 5T mag field in DESY
 - There was no difference in RPC behavior when 5T was on or off
 - Prototype of 64 ch. FEE printed board was tested successfully, PCB is outside of RPC and includes 8 channel MINSK chips OKA (amp.+disc.), ALTERA EP1K50 as FPGA and RS232 driver for sequential read out with PC

Ongoing

Beam tests in IHEP of 1 m2 RPC plane with 32x32=1024 channels (Nov05)
GEM HCal

Univ. of Texas, Arlington
Univ. of Washington
Changwon National Univ., Korea
Tsinghua Univ., China
GEM-based HCal

Ar/CO₂ gas mixture
Amplification with dual foils
G ~ several thousand
Each layer 8-9 mm thick
1cm x 1cm pads
1-bit readout
Status and Plans

- Assembly of five 30cm x 30cm GEMs
- Development and testing of long foils
- Completion of 1m³ prototype in 2006

Signal size, cross-talk, efficiency studies with prototype detector

250 mV

ΔV = 381 V

Thr = 60 mV

Assembly of five 30cm x 30cm GEMs
Development and testing of long foils
Completion of 1m³ prototype in 2006
Dual-Readout Calorimetry

Texas Tech. Univ.
UC-San Diego
Iowa State
DREAM

Measure the EM content event by event

Copper absorber structure
Scintillating (dE/dX) and Quartz fiber (Cerenkov)
Status and Plans

Investigate designs suitable for an ILC detector
Introduce non-hydrogenous Sci-Fi
2006-07 test beam timescale
Getting together for beam

Abstract

The linear collider requires a detector with excellent performance to fully exploit its physics potential. In particular, requirements from the measurement of hadronic jet energies indicate a goal of developing the calorimeter with an unprecedented jet energy resolution of 30%\%\% or better. In order to meet this challenge, novel technologies and reconstruction techniques are being developed, which need to be tested with particle beams. The recent decision by the International Technology Recommendation Panel (ITRP) concerning the linear collider accelerator technology poses a time scale of at least a few years for the basic detector design choices. A vigorous test beam program over the next few years is necessary to provide a solid basis for these decisions. In this regard, the International Linear Collider Calorimeter and Muon Detector Test Beam Group submit this planning document to Fermilab. The main goals of the test beam program outlined in this document are to evaluate the different choices of technologies proposed for the calorimeter and to understand, validate and improve the Monte Carlo modeling and simulation of hadronic showers. This document contains a description of fourteen distinct calorimeter and muon detector/final-catcher groups and their requirements for specific test beam resources. This planning document also lays out time scales and institutional responsibilities for the proposed test beam program. It provides plans for the users of the Fermilab Meson Test Beam Facility, and needs for upgrades to particle energy ranges and intensities, and associated engineering and computing support services.

V. Zutshi, Snowmass 2005
Summary

Unprecedented calorimetric performances demanded at the ILC.

A world-wide effort gearing up to meet this challenge