

Drift Tubes as Muon Detectors for ILC

Dmitri Denisov Fermilab

1

- Major specifications for muon detectors
- D0 muon system tracking detectors
- Advantages and disadvantages of drift chambers as muon detectors
- Summary

Major Specifications for (ILC) Muon Detectors

- High efficiency of muon hit detection
- Low sensitivity to backgrounds
- Reasonable time resolution
 - Bunches separation
 - Backgrounds rejection
- Reasonably good coordinate resolution
 - Matching central tracker track with muon system hits
 - Momentum resolution

 $\sigma_p/p \sim (p \cdot \sigma_{det})/(B \cdot L_{det}^2)$ & multiple scattering

- Limit is set by multiple scattering of 100GeV/c muon in 1m of steel at ~1mm
- Lack of radiation or other types of aging
- High reliability
- Low construction and operational costs

One of the options for ILC muon detector is drift chambers

- 1. Well known technology: many collider experiments used/use this technology, for example D0 and CDF
- 2. Satisfies reasonably well above specifications
- 3. Will describe major parameters using the D0 muon system

Dmitri Denisov, ILC Snowmass 2005

Run II DO Detector

Proportional Drift Tubes

- Central muon system tracking detector (/eta/ <1.0)
 - Total ~8⁻10³ cells
 - 3 layers: one before iron (4 planes) and two after iron (3 planes each)
 - Average number of muon hits on track ~10
 - 10x5 cm² drift cells with maximum drift time of ~450ns
 - Gas mixture: Ar(84%)+CF₄(8%)+CH₄(8%)
 - Fast, non-flammable, inexpensive
 - Coordinate resolution in drift direction: ~0.5mm
 - Diffusion
 - Amplitude fluctuations
 - Gas gain ~10⁵, detection threshold ~1μA

Forward Muon Tracking Detector

- Forward muon tracking detector is based on minidrift tubes
 - 1x1cm² drift cell
 - 8 cell aluminum extrusion comb with 0.7mm thick walls
 - Stainless steel cover and PVC sleeve provide electrical field configuration and gas tight volume
 - ~10⁵ gas gain, 2μA operating threshold

- Tubes are assembled into 8 octants per layer with wires parallel to magnetic field lines
- Total number of wires in the system is 50,000
 Same cathode HV for all wires
- There are 4 planes of wires in a layer before toroid and 3 planes of wires in each of two layers after toroid
 - muon track has ~10 hits on track

Dmitri Denisov, ILC Snowmass 2005

D0 Forward Muon Tracker

- Mini-drift tubes filled with $CF_4(90\%)+CH_4(10\%)$ gas mixture
 - Non-flammable
 - Very fast (~60ns max drift time)
 - Re-circulation with small losses (~5%) reduces gas cost
 - Wide 100% efficiency mip platou
 - 2.9kV-3.4kV
- Coordinate resolution of the mini-drift tube system is defined by electronics
 - TDC bin is 19ns (cost driven)
 - σ=0.7mm
 - affects "muon system only" coordinate resolution for muon momentum above 50GeV/c
- Reliability
 - total number of disabled wires
 - 0.3% after commissioning
 - dead or noisy
 - I nitial increase in number of disabled wires is less then 0.1% per year of operation
 - No increase over last year
 - On average ~1 broken wire per year (out of 50,000) for 5 years of operation

Accumulated charge for integrated luminosity of 15fb⁻¹ (twice above Run I I goal) is estimated at 30mC/cm Aging test with Sr⁹⁰ r/a source demonstrates no aging effects up to 2C/cm

- Experienced proportional drift tubes radiation aging in Run I (1991-1996)
 - Material with high outgasing was used during construction (by mistake)
 - I ncrease of gas flow and installation of filters in recirculation system resolved aging issue
- Run II (2001-200X) approach
 - All detectors are carefully tested for aging before the run
 - Wire detectors with r/a sources, real gas mixtures, production modules
 - Slow charge integration over a year of testing
 - Monitoring of detectors performance
 - Daily for detection efficiency
 - About twice a year cosmic counting curves
 - Check of gas gain
- No unexpected effects so far in Run II

Monitoring gas gain using cosmic ray counting curves (~10% accuracy)

Major Advantages and Disadvantages of Drift Tubes as Muon Detectors

Advantages

- High intrinsic coordinate resolution
 - ~0.5mm easily achievable
- Small sensitivity to backgrounds
 - Density is low, small H concentration
- High detection efficiency
 - ~10² or more primary electron/ion pairs per mip – 99.9...% efficient
- Large signals
 - Gas gains up to ~10⁶
- Low intrinsic noise
- Good occupancy characteristics
 - ~10⁶ particles/cm² sec
- Multi-hit capabilities in large drift cell
- Time resolution
 - Single layer ~ max drift time
 - Double layer ~ a few ns
- Operation in magnetic field
- 30+ years of construction/operation experience
 - All(?) issues are known
- Possibility of dE/dx measurements
- Reasonably low cost
 - ~\$2k/m² including all electronics

• Disadvantages

- Large number of thin wires
 CMS over 10⁶ wires
- Need to purge the system with gas mixture
 - Possible gas leaks
 - Need to supply gas during operation
- I nefficient zones
 - Near wires supports
 - Near ends of the modules
- Reasonably clean room assembly facility

Summary

- Drift tubes of various configurations have been and are successfully used in muon systems of large collider experiments
- The technology is well known and satisfies requirements for ILC muon detector
- Cost is reasonably low and production factories exist or easy to setup
- Robust detector, reasonably insensitive to many parameters like temperature, pressure, high voltage, etc.
- Reasonably small number of channels
 - ♦ <10⁶ even for small cell sizes
- R&D needed in order to select optimal drift-tube configuration and operating parameters
 - Cell sizes, wire diameter
 - Gas mixture
 - Wires supports and end-caps design
 - Electronics design
 - Cost reduction

Drift-tubes might be successfully used for ILC muon system(s)