Gas Detectors for μ systems

Marcello Piccolo
SNOWMASS August 2005

μ system requirements for gaseous detectors

- Given the design we have seen up to now, a muon system should comprise a detector that;
 - Is efficient at detecting minimum ionizing particles.
 - Can cover very large areas with relatively low cost
 - Can afford long pick-up strips, or in general large capacitance electrodes.
 - Offers a good reliability.
 - Is mechanically sturdy so that installation would not require enormous care and time.
- Peculiarity of gas detectors is the very high granularity, they can offer.

μ system requirements for gaseous detectors (cont.)

- Different parts of the detector might experience different background condition:
 - e.g. the end-caps might have a much higher counting rate from beam associated e.m. stuff (traveling WITH the beam itself)
- This might warrant using different devices if performances required go beyond what a detector can yield.
- If possible, uniformity should be, in my opinion a guiding principle in design.

Which devices

- Either wire or parallel plates detector can fulfill the requirements mentioned above.
 - In the wire device compartment I will just mention the Plastic Streamer Tubes.
- As for what parallel plates detectors are concerned both plastics (various types) and glass have been used: both material have their pros and cons.

Rate capability for gas detectors

Detector	Hits/cm ² *sec	Typical p.h.
Plastic Streamer Tubes	>104	30 mV
Bak. RPC stream. Bak. RPC aval.	10 10 ³	300 mV 3-5 mV
Glass RPC stream. Glass RPC aval.	1 10 ²	300 mV 3-5 mV

Plastic Streamer Tubes

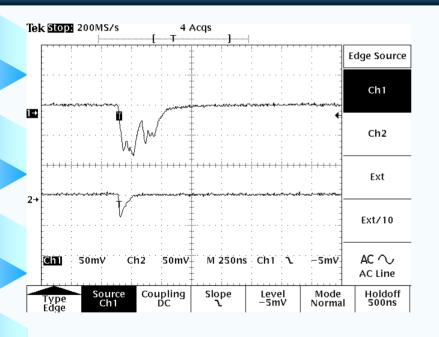
- This is a very mature technique:
 - More that 10⁶ wires built in various experiments
 - The coverless design allows (strips) read-out transverse to the wires or pads.
 - The coordinate transverse to the wire can be obtained from the wire itself:
 - With this design one could have a very low cathodic resistivity, which, in turn, yields a good painting efficiency.
- Pulses are smaller that parallel plates detectors, (30 mV on the wires), but long electrodes have been successfully used. (up to 8 m. in length)
- Lately used in the BaBar muon identifier to replace an ageing bakelite RPC system.
- Not much R&D needed on the detector itself; might require some R&D on specific implementations (cabling, pickup, H.V. ...)
- Not really a bidimensional device

What about RPC's

- Parallel plate counters are in principle devices that should be extremely easy to use and reliable.
- In practice things did not go the way one would expected with streamer devices when used on a large detector scale.
- In BaBar bakelite showed problems, that were connected also with operational misuse.
- For BELLE there was a big scare at the beginning, which faded away, as water content of the gas mix was controlled better. (The double gap design is also more robust)
- As of now, expectations for the Mylar lined bakelite advocated by a Chinese groups are very high.
- Still some concerns on long term reliability.
- Truly bidimensional devices

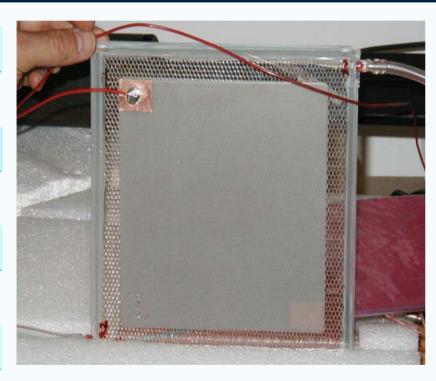
The RPC working environment

- Given the field shape of a parallel plate chamber, one is forced to use very electronegative (and thus chemically aggressive) gases.
- This in turn might harm the electrode surfaces and cause loss of performances.
- The way glass (e.g.) RPCs lose efficiency is typically due to an increase of dark current/singles rate, which, in turn, reduces the effective gap voltage because of the electrode bulk resistivity.


RPC R&D

- Many groups have developed both glass and bakelite parallel plate detectors.
- I will not present here, for once, the traditional R&D work on RPC
 - Many large systems are coming on line (LHC)
 - Many effort also present in the ILC community
- I will describe instead a different R&D effort which would eventually lead to a device that will offer stable performances because of the way it is built and operated

Quenching the streamers


- As mentioned before, streamer confinement is usually obtained by the electrode resistivity (voltage drop upon discharge) and by using gases that eat-up electrons.
- We believe that the second function can be achieved mechanically using a mesh that would divide the gas volumes into cells, the division being impervious to discharge electrons.
- We tested this idea and I will show the data we obtained in the following.

Quenching the streamer (cont.)

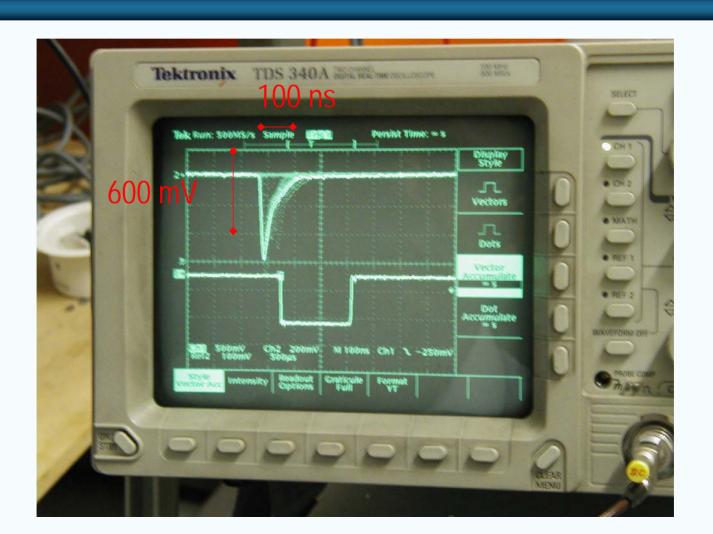
- Here we can see the pulses of a 2mm gas gap filled with Argon/Isobutane 95-5 (%) mix @ 6000 V.
- The upper trace refers to a normal glass RPC.
- The lower trace refers to a glass RPC in which a mechanical quencher was at work.

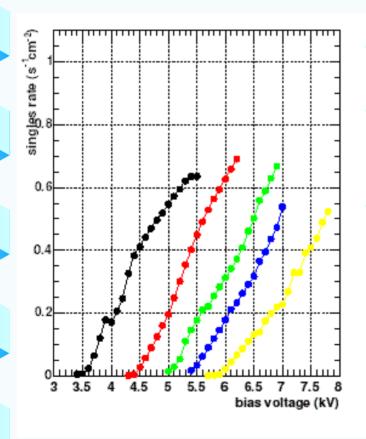
Mechanically Quenched RPC the ADHOQ detector

A. Calcaterra, R. de Sangro, G. Mannocchi, P. Patteri, P. Picchi, M. Piccolo, N. Redaelli, T. Tabarelli de Fatis, G. Trinchero

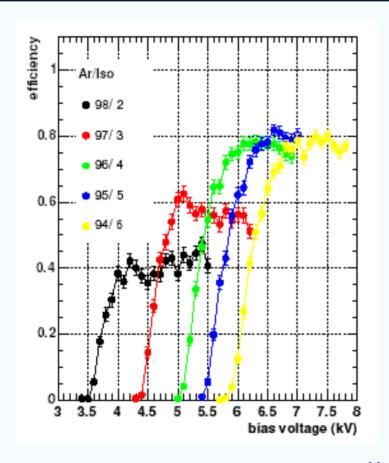
- The material needed to quench must be a very good electrical insulator.
- It has to be mechanically sturdy
- It has to be resistant to chemicals and possibly non flammable.
- A material like that does exist and is routinely produced: it is used as a filler material in plane wings: ECA-I.
- Mesh size used up to now 3mm diameter.

Test Setup

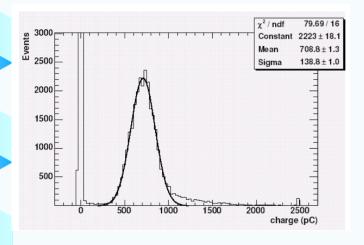



 Test 8x8 cm² area defined by two scintillator trigger counters.

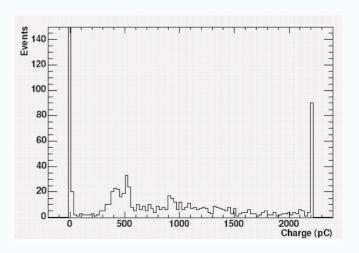
One 18x18 cm² single pad for digital (30 mV threshold) and analog readout


- Gas Mixes Ar/Iso flowing at about 5 l/h
- Two chambers:
 - 2 mm glasses

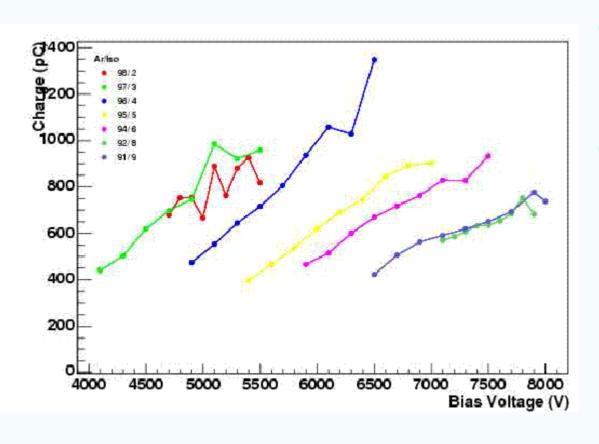
Marcello Piccolo 13



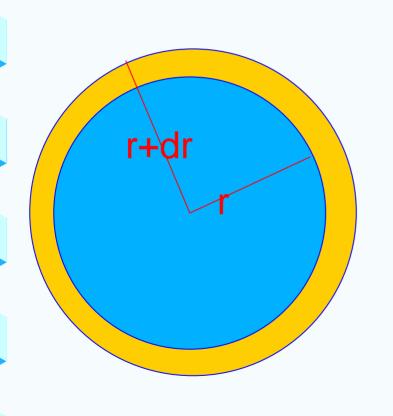
- The results obtained measuring the single rates were reasonable.
- As a matter of fact singles rate were a factor of three higher than traditional RPC, but still about few KHz/m²
- Yet, one has to stress that, in case of a very resistive electrode material this would mean a loss of effective gap voltage.



- Here are few efficiency plateaux for different gas mixtures.
- The ADHOQ devices start working with a minimum amount of quencher of 2-3%.
- The top efficiency is about 80% and comes about with more than 4% quenching gas (Isobutane)


- Here is pulse height for the ADHOQ device at 95-5 % Argon-Isobutane mix.
- The limiting effect on the on the streamer is clear.

- Here is the amplitude for a normal RPC with the same mix:
- The Geiger effect is clear: many times the chamber is completely illuminated by the discharge.


Marcello Piccolo 17

Collected charge vs. H.V.

- Here too, the typical behavior of a saturated regime is clear
- The collected charge is linear vs. the bias voltage.

Marcello Piccolo 18

- Approximation of a single hexagonal cell:
- 1- $\varepsilon = 2\pi r dr / \pi r^2 = 2 dr / r$
- 20% inefficiency
 → dr = 0.1 r ≈ 0.15 mm

of the order of the honeycomb thickness

Where do we stand

- Both Plastic Streamer Tubes and Parallel Plate Counters could be effectively used as active part of a μ-detector.
- PST have been around for long time and they have well known pros and cons.
- RPCs work well: the only concern has to do with their long term stability.
- R&D to this purpose has been and is being carried on.
- Results from LHC will soon be available.

Where do we stand (cont.)

- The question of reliability could also be addressed trying to built a device that doesn't need aggressive chemicals to function.
- In this line of thought, the idea of mechanically quenching streamers is intriguing.
- To a very preliminary look it works....
- We have, however, a quite big phase space to explore:
 - Mesh size
 - Gas Mixtures
 - Electrode materials
 - •
- The stability of the detector in principle should be checked, but I would not anticipate troubles, giving that the device operate mainly out of a noble gas.

Conclusions

- Both PST and RPC could be the active part of a high efficiency μdetector.
- The former does not need much of R&D as is a very well known device.
- The latter works fine: few concerns are still there for long term reliability, but they will fade soon .
- The idea of mechanically quenching the streamer in a parallel plate counter seems worth a try.
- The very first results are, in my opinion, encouraging.
- The honeycomb structure might proven a big simplification in the construction/assembly phase of the detectors.
- The R&D work on this device has just started: reliability, construction of large area detectors, test of different electrode material have to be carried out. The basic idea seems to hold the promise of a reliable, easy to build and operate detector.