GLD-MUON R/D

T.Takeshita for GLD @Snowmass 05

GLD-MUON system R/D results scintillator and photon sensor R/D needed

GLD-MUON: detector

GLD detector

GLD-MUON: system

scintillator bars + MPC

barrel module

endcap module

GLD-MUON: scintillator R/D

scintillator bar R/D at Kyungpook N. U.

GLD-MUON: scintillator R/D cont.

Progress

no dopant 2nd batch MINOS Ist batch GLD-muon R/D at Snowmass 05

T. Takeshita

GLD-MUON: scintillator R/D cont.

Progress and study

relative light yield

POPOP optimization

- detector is in the magnetic filed of 3T
- photon sensor at the both ends of scintillator
- we need small and semi-conductor photon sensor

• test samples: MPC(H100,H400) Multipixel

Photon Counter and

SiPM(R1156)

400pix $< 50 \mu$ m>

Pictures of Russian SiPM

≒ 1mm

Photon Counting capability

at room temperature

H100 (V_B=49.1V, T=20C, no AMP)

H100 is excellent

H400 (V_B=48.8V T=20C, Amp Used)

MPC H100 photon counting capability

different led drive voltages

changing led pulse width

10C

20C

- Noise rate
 - -30mV threshold
 - with amp (x200)

MPC's are calm

T. Takeshita

• absolute gain for H100

gain $\sim 2 \times 10^7$

gain vs temperature

pixel to pixel test by laser photon 532nm

pixel test by laser photon

- to do list
 - linearity (saturation)
 - efficiency (overall and pixel)
 - X talk ? (pixel to pixel)
 - device to device difference
- improve MPC with Hamamatsu PK.

GLD-muon R/D

- scintillator production is in progress
- photon sensor R/D is on going
- beam test a bar+2MPC's this fall
- simulation effort is needed for realistic muon detector
 - efficiency for muon/ misidentification
 - optimum number of layers
 - thickness of the bar