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SiD Solenoid since LCWS05

• What is the SiD Solenoid?
• Add Dipole in Detector to SiD model
• “Publish” fieldmaps: “beamline” from 2D 

model; Inner Detector from 3D model
• Normalize Cost SiD magnet cost model 

to CMS “as built” data…
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High-Field HEP Solenoids

• High Field, Large Size create 
many challenges

Look for Proof of Principle…
Only “High Field” Operating Solenoids 
at 2T: DØ, Atlas;
at 3T: AMY (cryostable, 
heavy/expensive pressure vessel)

Closest is (may be?) CMS: 4 T, 
2.7 GJ, Ø = 6m, L = 13 m

• Develop Preconceptual Design 
“Along Lines of” CMS

Expedites Approach to Credible 
Conductor/Winding Designs
Credible Engineering Approach for 
Industrial Fabrication
Credible Cost Estimates

HEP Detector Superconducting Solenoids
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Follow CMS Conductor, Winding Designs

• First Cut: Same conductor as CMS
• Winding Design: CMS (4 layer) SiD (6 layer)
• CMS 5 modules 2.5 m long Sid 2 modules 2.6 m long
• Choose 6 layers (tradeoffs), “derate” CMS conductor to 

5.8 T peak field (vs. 4.6 for CMS).  I (CMS) = 19500; I 
(SiD) = 18000. 

Critical current Ic(4.2K,Bpeak) derates 46900/59000 ~ 0.79
Iop derates ~ 0.92
Stability expectations require modeling; 32 CMS strands => 34 
for SiD
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2D, 3D ANSYS Models

Rout = 3098

Rin    = 2645

Z = 2847

23 Layers 

BarrelSteel

23 Layers 
End Steel

Si Tracker

Boundary

R = 3428

Z = 6247
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Strains from Cooldown, Energization

solenoid axis
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Von Mises Stress in Winding Pack, 
Cold & Energized

HP Al:

22 Mpa = 3190 psi

Quantity SiD CMS

Von Mises Stress in High-
Purity Al 22.4 MPa 22 MPa

Von Mises Stress in 
Structural Al 165 Mpa 145 MPa

Von Mises Stress in 
Rutherford Cable 132 MPa 128 MPa

Maximum Radial Displacement 5.9mm ~5mm

Maximum Axial Displacement 2.9mm ~3.5mm

Maximum Shear Stress in 
Insulation

22.6 MPa 21 MPa
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Compare with CMS

• Conclude cryostat approach can be like CMS:

Quantity SiD CMS

Radial Decentering 38 kN/mm 38 kN/mm

Axial Decentering 230 kN/mm 85 kN/mm

Stored Energy 1.4 GJ 2.8 GJ

Requirements
• Cold mass support – 130 Mt
• React decentering forces, seismic,

cooldown, steady-state operation

CMS Concept
• Thin metallic rods preloaded in 

tension
• Axial rods for axial loads
• Vertical rods for dead weight
• Additional tangential rods (in 

preloaded pairs) for radial loads
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Iron Yoke Issues

Endplate gussets support 
barrel Layers, allow 
insertion of muon 

chambers

Maximum deflections 
(loaded with calorimeters, 

solenoid)  ~0.3 in 

Barrel (and End Caps): 
Steel plates 10 cm thick, 

5 cm gaps
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Interaction Thickness, Inner Winding Layer

Solenoid (Inner Layer) Interaction Length Thickness
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Calculation for single winding layer highlights nonuniformity of conductor



Snowmass ILCW Aug 23, 2005

11

RP Smith, R Wands

Interaction Thickness, Entire Solenoid

Solenoid Total Interaction Length Thickness
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Layers aligned to maximize nonuniformity of conductor
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Fieldmaps
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• Near-axis field out to Z=20 m

• Central Field – uniformity, etc

On the SID website…
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Dipole-Integrated-Detector 
facilitates Crossing Angle

0.15 
m

0.02 
m

Inner radius of 
dipole coils is 
1 cm greater 
than support 
cylinder radius

NI per dipole coil 
= 541200 A-t

“Saddle-coil”
dipole wrapped 

onto outer 
support cylinder 

of solenoid
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Forces on Dipole Burdensome, 
May be Manageable

• Fx = 400K lbs (radial, summed)
• Fz = 1754K lbs (axial, summed)
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DID Field on SiD Axis

• DID (zeroes IP vertical angle, SR vertical beamsize growth) compatible 
with Antisolenoids used for beam-size compensation from solenoid fringe

DID On-Axis Field
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Conclusions

• Need iterations with Detector/Physics Groups to select “most 
probable” performance parameters

How to “Open” detector ?
Must Detector Roll “off beamline” ?
Anti-solenoids in forward region 
EndCap steel support details
Muon steel plate/gap thicknesses

• Field Homogeneity not specified (Must we?)
• Radiation Transparency not specified (OK?)
• “Fallback” field (below which physics is compromised not 

specified (SiD should specify)
• Develop Cost Model based on CMS actuals
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