Muons:
 Supersymmetry and Other Models and Links to Cosmology

A. Freitas

Fermilab

1. SUSY and SUSY parameters
2. SUSY dark matter
3. Universal extra dimensions
4. Other stuff

SUSY and SUSY Parameters

- Mass measurements
- Sparticle couplings

Mass measurements

Smuons mostly decay into muons and neutralinos (or gravitinos)
Use different decay modes to disentangle $\tilde{l}_{\mathrm{R}}, \tilde{l}_{\mathrm{L}}$

\[

\]

very clean signature:
few leptons $+\not E$

SPS1a scenario

Neutralinos and Charginos can also decay via muons

$$
\begin{aligned}
& \tilde{\chi}_{2}^{0} \rightarrow \mu^{+} \mu^{-} \tilde{\chi}_{1}^{0} \\
& \tilde{\chi}_{1}^{-} \rightarrow \mu^{-} \nu_{\mu} \tilde{\chi}_{1}^{0}
\end{aligned}
$$

BRs depend largly on SUSY scenario, but can be $\mathcal{O}(20 \%)$.
Neutralinos and Charginos can be produced in various pairs,

$$
\begin{aligned}
e^{+} e^{-} & \rightarrow \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{ \pm} \tilde{\chi}_{2}^{\mp}, \tilde{\chi}_{2}^{+} \tilde{\chi}_{2}^{-} \\
& \rightarrow \tilde{\chi}_{1}^{0} \tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0} \tilde{\chi}_{3}^{0}, \tilde{\chi}_{2}^{0} \tilde{\chi}_{2}^{0}, \ldots
\end{aligned}
$$

\rightarrow Often muons in conjunction with other leptons of jets in final state

Smuon mass measurement

- From edges in decay energy distributions

Example:

Typical resolution:
0.1-0.2\%

Experimental challenges:

- Good momentum resolution \rightarrow tracker
- Particle ID for rejection of backgrounds
- Good track-muon hit identification
in general P -wave $\alpha \beta^{3}$
here assume $5 \times 10 \mathrm{fb}^{-1}$ in $e^{+} e^{-}$

$$
e^{+} e^{-} \rightarrow \tilde{\mu}_{\mathrm{R}}^{+} \tilde{\mu}_{\mathrm{R}}^{-} \rightarrow \mu^{+} \mu^{-}+\not \equiv
$$

incl. beamstrahlung, ISR, etc.

Typical resolution:
0.1-0.2\%

Experimental challenges:

- Measurement of beam energy
- Particle ID for rejection of backgrounds
- Determination of beamstrahlung spectrum

Slepton couplings

Fundamental supersymmetry relation
Gauge coupling $g=$ Yukawa coupling \widehat{g}
\rightarrow required to resolve hierarchy problem
\rightarrow compare precise cross-section measurements with theoretical predictions

Experimental challenges:

- Precise measurement of total cross-sections: better than 1\%
- Accurate knowledge of particle ID efficiency for various μ energies
- Good rejection of fake muons

Slepton couplings

Electroweak gauge \& Yukawa couplings can be probed in

- Neutralino production

Choi, Kalinowski, Moortgat-Pick, Zerwas '01

- Slepton production

Freitas, v.Manteuffel '02

Tau backgrounds

Large tau backgrounds at ILC:

- from SM processes, such as $\gamma \gamma \rightarrow \tau^{+} \tau^{-}$
- from SUSY processes, in particular for large $\tan \beta \gtrsim 10$

$$
\begin{aligned}
& \tilde{\chi}_{2}^{0} \rightarrow \tau^{+} \tau^{-} \tilde{\chi}_{1}^{0} \\
& \tilde{\chi}_{1}^{-} \rightarrow \tau^{-} \nu_{\tau} \tilde{\chi}_{1}^{0}
\end{aligned}
$$

- In 17.5% of the cases, tau decays into muons $\tau^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu} \nu_{\tau}$
- Good understanding of muonic tau decay can help to evaluate tau background and thus obtain clean SUSY smsamples
\rightarrow Precise knowledge of particle ID efficiency important

SUSY Dark Maiter

- Smuon co-annihilation
- Focus point region

Dark matter

Evidence for dark matter from many sources:

Rotation curves of galaxies

Supernovae Ia redshift

CMB
~85\% of matter in universe is dark

Gravitational Iensing

Large scale structure

Dark matter and Supersymmetry

Dark matter has to be stable and weakly interacting

Supersymmetry has natural dark matter candidate:

```
lightest neutralino \mp@subsup{\tilde{\chi}}{1}{0}}\mathrm{ stable for R-parity conservation
```

- Dark matter particles freeze out when expanding universe cools
- After freeze-out dark matter particles annihilate
- Annihilation cross-section

$$
\tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} \rightarrow X
$$

suppressed due to chirality conversation
\rightarrow Too large relic density in many SUSY scenarios

Co-annihilation

Mass of SUSY particle $\tilde{\mu}$ close to lightest neutralino $\tilde{\chi}_{1}^{0}$

- Freeze-out of $\tilde{\mu}$ and $\tilde{\chi}_{1}^{0}$ at roughly same temperature
- Annihilation in parallel (co-annihilation)
- Reduction of total dark matter density

Typical parameter region

Typical mass difference for effective co-annihilation:
$\Delta m=m_{\tilde{\mu}}-m_{\tilde{\chi}_{1}^{0}} \sim \mathcal{O}(10 \mathrm{GeV})$
\rightarrow Muons in decay $\tilde{\mu}^{ \pm} \rightarrow \mu^{ \pm} \tilde{\chi}_{1}^{0}$ are soft
\rightarrow Require good and reliable muon ID for low-energy muons (few GeV)

Focus point region

Sleptons and Squarks are heavy (few TeV)
\rightarrow Irrelevant for dark matter annihilation
\rightarrow Beyond reach of colliders

Neutralinos and chargino can be light (few 100 GeV)

In mSUGRA: Electroweak symmetry breaking requires Higgs parameter $\boldsymbol{\mu}$ to be relatively light
\rightarrow Enhances annihilation into gauge-bosons

Focus point region

Analysis of focus point region at ILC:

- Determination of SUSY parameters M_{1}, M_{2}, μ and $\tan \beta$
- Most promising: production of $\tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{ \pm} \tilde{\chi}_{2}^{\mp}, \tilde{\chi}_{1}^{0} \tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0} \tilde{\chi}_{3}^{0}, \tilde{\chi}_{2}^{0} \tilde{\chi}_{2}^{0}$
- Main decay mode via W and Z
$\rightarrow 11 \%$ and 3% BR into muons
Typical channels in characteristic scenario (LCC2):
$\tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-} \rightarrow j j l+\notin$
Birkedal et al. '05
$\tilde{\chi}_{1}^{0} \tilde{\chi}_{k}^{0} \rightarrow j j+\not \subset, l l+\not \subset$
$\tilde{\chi}_{2}^{0} \tilde{\chi}_{3}^{0} \rightarrow j j l l+E$
Signal signature with muons and jets:
- Good seperation of jets and muons
- Good momentum resolution
- Reliable muon ID over range of energies

Distribution shapes

Distribution shapes contain important information:

Universal extra dimensions

Extra dimensions

- Space-time can have more than 3+1 dimensions
- Extra dimensions have to be small, e.g. $5^{\text {th }}$ dimension with cyclic geometry and radius $R \sim 1 / \mathrm{TeV} \sim 10^{-17} \mathrm{~cm}$
- $5^{\text {th }}$ of particle momentum is quantized in units of $1 / R$: $p_{0}^{2}-\vec{p}^{2}=p_{5}^{2}=m_{\text {eff }}^{2}=(n / R)^{2}$
\rightarrow Conservation of p_{5} becomes conservation of KK number n
- KK number is broken my boundary terms to KK parity $P_{\text {KK }}=(-1)^{n}$
- Universal Extra Dimensions:

Appelquist, Cheng, Dobrescu '01
all fields live in all dimensions
\rightarrow Lightest KK particle (with $n=1$ is stable
\rightarrow All other $n=1$ KK particles decay to LKP
$\rightarrow n=1 \mathrm{KK}$ particles must be pair produced

UED mass spectrum

- At $0^{\text {th }}$ order all KK masses equal $m=1 / R$
- Boundary terms
shift masses apart (similar to SUSY soft breaking terms)
- Since $\alpha_{1}<\alpha_{2}<\alpha_{3}$ we expect the LKP to be KK excitation of $U(1)$ boson $B_{\mu}^{(1)}$
- The next-to-LKP is typically the right-handed lepton $l_{\mathrm{R}}^{(1)}=e_{\mathrm{R}}^{(1)}, \mu_{\mathrm{R}}^{(1)}$

LKP dark matter

- Only free parameter:
size of extra dimension R
- LKP annihilate as the universe evolves. Typical LKP masses in accordance with WMAP relic density: $m_{\text {LKP }} \sim 500 \mathrm{GeV}$

- If mass of $l_{\mathrm{R}}^{(1)}$ close to $B_{\mu}^{(1)}$ co-annihilation is possible $\rightarrow m_{\text {LKP }}$ raised to 600-900 GeV

- More dimensions than 5 lower the preferred LKP mass

UED collider signatures

- At ILC: pair production of NLKP $e_{\mathrm{R}}^{(1)}, \mu_{\mathrm{R}}^{(1)}$
\rightarrow Decay into e, μ
- Cross-section rises steeply $\propto \beta$ at threshold \rightarrow Distinction from SUSY
- Muons can be soft in case of co-annihilation
- Angular distribution
$\frac{d \sigma}{d \cos \theta} \sim 1+\cos ^{2} \theta$ as opposed to smuons
$\frac{\mathrm{d} \sigma}{\mathrm{d} \cos \theta} \sim 1-\cos ^{2} \theta$
\rightarrow forward/backward muon coverage rq'd

Other stuff

\square Radions

- Warped GUTs

Radions

- The radion corresponds to fluctuations of the size of the extra dimension
- Radions have various cosmological implications:
- Dark matter
- Inflation
- Cosmoligcal perturbations
- Radions ϕ can mix with the Higgs boson, i.e. have an effect on $e^{+} e^{-} \rightarrow Z H, Z \phi$
\rightarrow Precise analysis of the $Z \rightarrow \mu^{+} \mu^{-}$recoil spectrum essential for discovering radion effects
\rightarrow Good muon momentum resolution
\rightarrow Accurate knowledge of muon ID efficiency

Warped Grand Unified Theories (GUTs)

- Extra dimensions can be warped to explain hierarchy between electroweak and GUT scales
- Warped extra dimensions can be combined with GUTs and a stable KK fermion (right-handed neutrino ν_{R}) can be dark matter candidate
- Depending on pattern of GUT breaking, the GUT partners of the ν_{R} decay very slowly
\rightarrow CHAMP (CHArged Massive Particle) signature
\rightarrow Can leave possible signature in muon detector
\rightarrow Distinction from muons?

Conclusions

No conclusions until ILC runs

