Normalized Background Tolerance Levels in ILC Tracking Detectors

- Introduction: motivation & methodology
- **O Detector tolerance levels**
 - o naive detector model
 - o pain-threshold estimates
 - o 1% "generic"
 - o detector-specific (where available)

O Comparison with predicted pair-induced background levels

• Conclusions

K. Büsser, W. Kozanecki, W. Lohmann, T. Markiewicz, T. Maruyama, T. Tauchi

Introduction

• Motivation

- assess detector sensitivity to IR design changes (e.g. DID) on a scale 'normalized' to relevance
 - 10 x a "very small" number may just be a "small" number, rather than a problem
- compare the sensitivity of various detector concepts (or subdetector technologies) to background levels in a given IR configuration

Methodology

- o define tolerance level, either
 - in a generic fashion: 1% occupancy allowing for a factor of
 - ~ 10 contingency for surprises & unknown effects
 - using estimates supplied by the Detector Concept Groups
- compare background levels predicted by simulation, to tolerance levels ('pain thresholds') in various subdetectors, in a consistent fashion
- o so far limited to
 - o tracking detectors
 - pair-induced backgrounds from ideal beams (no fluctuations)

Acknowledgements

- Much of what follows draws heavily on
 - the hard work of the people who produced the plots shown today
 - Karsten's & Takashi's presentations last week: thanks!

A naive detector-tolerance model

Subdetector	Tolerance criterion		
Vertex detector	Rad. damage (worst-case: $\underset{2}{CCD's}$) : < 3-10 x 10 ⁹ n cm ⁻		
and/or Silicon Tracker	Occupancy (pattern recognition): < 1% (2-d hit density)		
Time Projection Chamber	Occupancy (pattern recognition): < 1% (3-d density) ? Experts disagree on impact on reconstruction + space charge		

BBR:BBRPEP:DCHOCC

Detector-response model (*)

^(*) As per R. Settles et. al., TESLA St Malo workshop. Checked with R. Settles & P. Colas @ Snowmass '05.

Subdetector	Granularity	Sensitivity window	Fract'l sensitivity
Vertex detector (Layer 1)	20 μ x 20 μ pixels = 2500 pixels/mm ²	50 μs (~ 150 bunches)	Chgd trks: ε = 1.0 (4 pixels) γ: ε = 0.02 (4 pixels)
TPC	1.5 10 ⁶ pads x 10 ³ time buckets		Chgd trks: ε = 1.0 (3 p x 200 r x [5-10] tb) γ: ε = 0.02 (3 p x 200 tb)
	= 1.5 10 ⁹ voxels		n: ε = 0.01 (3 p x 200 tb) μ: ε = 1.0 (6 p x 1000 tb)

 \rightarrow "1% generic"

^(*) As per R. Settles et. al., TESLA St Malo workshop Detector-specific data from T. Maruyama + detector response to MDI questions, Aug 05.

Limits are expressed in # particles either per sensitivity window [SW] (typically 50 µs ≈ 150 bunches in VXD/TPC), per bunch train [tr], or per bunch crossing [BX]

Subdetector	Charged hits	γ	<i>n</i> (~ 1 MeV)	Model
Vtx detector (L1)	6 mm ⁻² / SW	300 mm ⁻² /SW	3 x 10 ⁷ mm ⁻²	1 % generic
	100 mm ⁻² tr ⁻¹		10 ⁸ mm ⁻² (/y?)	GLD
Si tracker	Pile-up: 0.2 / 1.0 mm ⁻² tr ⁻¹	Pile-up: 10/50 mm ⁻² tr ⁻¹		SiD: analog/digital
TPC (/SW)	1.5 x 10 ⁷ voxels 2.5 - 5 10 ³	1.25 x 10 ⁶ γ	2.5 x 10 ⁷ <i>n</i>	1 % generic
	tracks			

Notes

- 1. No generic answers depend strongly on subdetector technology
- 2. Need to clarify impact of TPC occupancy on track reco efficiency & space charge
- **3.** Only rough estimates so far. Real answer needs detailed simulations, pattern recognition studies, space charge, understanding of background distribution....
- 4. 1% may sound overconservative...but we need ~ x 10 safety factor!

Assumed Vertex-Detector Geometries

Concept	GLD	LDC	SiD
Radius (cm)	r1= 2.0	r1= 1.55	r1 = 1.40
Full length (cm)		L _z = 10.0	L _z = 12.5
Area (cm²)	Use GLD-provided normalization	S = 97.4	S = 110

e⁺ - e⁻ Pairs

Roam

ackground		Beam	# CICIDA	ene
ident on		Nominal (N)	98 K	197
rameters		Low Q (Q)	38	86
field strength	Ge/		104	101
compensation	00			131
mrad) 	20	Low P (P)	232	709
er radius		High Lum (H)	268	944
geometry		Nominal	174	1042
	TeV	Low Q	73	486
	~~	High Y	229	1356
		Low P	458	4596
		High Lum	620	7367

O Dominant b

• Very depen

- Beam pa 0
- Solenoid 0
- Solenoid \bigcirc (for 20
- VXD lay
- Forward \bigcirc

Total

energy

197 TeV

0+/0-/RY

VXD hits (GLD)

TESLA Beam parameters VXD tolerance: GLD

Crossing-angle dependence (LDC)

TESLA Beam parameters VXD tolerance: 1% generic TPC tolerance: tbd

o VXD hits

- No difference between 0 mrad and 2 mrad
- x 1.5-2 higher background in 20 mrad

- TPC hits: <u>converted</u> γ only (no n's) from elm effects (pairs)
 - Twice as much in 2 mrad than in 0 mrad
 - Twice as much in 20 mrad than in 2 mrad
 - *neutrons*: under study (gas, ECAL...)

DID effect on VXD & TPC hits (LDC)

TESLA Beam parameters VXD tolerance: 1% generic TPC tolerance: tbd

o VXD hits

 DID field reduces VXD hits to 2 mrad level in all but layer 1

- TPC hits: <u>converted</u> γ only (no n's) from elm effects (pairs)
 - Significantly more TPC hits but still a factor of 5 below the 1% occupancy tolerance

Crossing-angle dependence (SiD)

\rightarrow ~ 103 hits mm⁻² tr⁻¹

- Average and RMS from 20 BXs.
- 20 mrad and 20 mrad + DID will have more VXD hits than 2 mrad.
- But bunch-to-bunch fluctuation is larger than the crossing angle difference.

VXD tolerance: 1% generic Pair background ~ Xing-angle independent (at least in set N)

e⁺/e⁻ density in Si Tracker (SiD)

- o Steep radial dependence
- Innermost region is at the tolerance level for pattern recognition (0.2 cm⁻² / BX).

Photons in Si Tracker (SiD)

- Twice as many photons in 20 mrad than in 2 mrad
- More than the detector tolerance level for "Low Power" and "High Lum" options

Open issues

- Tolerable TPC occupancy = ? (track reconstruction / space charge)
- **O** Neutrons
 - background impact very sensitive to actual spectrum (e.g. TPC gas, plastic in calorimeter,..). Should be studied in calorimeter also!
 - o present simulations often statistics limited
 - o neutrons worse @ 1 TeV c.m. by ~ 1 order of magnitude?
 - o can extraction-line losses contribute significantly?
- **O** Synchrotron radiation
 - o can we design a "bounce-proof" SR masking layout?
 - o back-scattering from apertures!
 - o edge- & tip-scattering off masks!
- Single-beam backgrounds: electromagnetic shower debris
 - halo scraping in or near final doublet (coupled to SR/collimation depth)
 - o beam-gas
- Backgrounds in forward detectors?
- Hot spots & asymmetries (for all of the above): \rightarrow 1 o.o.m? Impact?

Summary

- Proposed a 'standardized' way to compare
 - background levels in a given detector, across IR designs
 - IR designs across detector concepts
- A '1 % occupancy limit' (per train or per SW), implying a 'x 10' safety factor are probably adequate, at this stage & in most cases, for the vertex detector & Si tracker
- Comparison of predicted pair-background levels to (conservative!) detector tolerance levels (aver'gd over X-angle):
 - o vertex detectors:

0	LCD, SiD:	layer 1 @ ~ occupancy tolerance (~ 1%)
0	GLD:	layer 1 @ 1 order of magnitude below tolerance
0	all:	high L/ low P parm sets \rightarrow significantly higher occ'pcy

- ◎ Si tracker (SiD): Pat Rec OK, pile-up x 5-10 > tolerance (⇔ buffering)
- **O TPC:**
 - predicted occupancy from e⁺e⁻ pairs is at the level of 0.02% to 0.20% (DID)
 - however, impact of such occupancies on (i) track reconstruction efficiency and (ii) space charge, remain to be understood

• Several important open issues: let's go beyond pairs & trackers!

More on open issues & 'sanity checks' (I)

• Synchrotron radiation (continued)

- Lessons from existing detectors
 - BaBar design: SR background dominated by tip-scattering
 - **o** BELLE: 'fried' their first VDET by a combination of
 - improperly masked incoming-beam SR (very soft X-rays from XYCORs)
 - hard SR backscattered from the first beam-pipe wall on outgoing side
 - Zeus + H1: SR much of it backscattered absorbs a large fraction of their 'background budget'

More on open issues & 'sanity checks' (II)

• Muons

- Secondary e[±] energy cutoff (> 50 GeV in A. Drozhdin's code in 2002) may be (have been ?) too high to realistically model 'harmful' μ production
- **© tunnel modelling (wrt μ transport): a huge job by itself....**
- Electromagnetic debris: production & transport
 - Is the showering in 'thin' machine elements (vacuum pipe, magnets) modelled with enough realism to be sure we are not overlooking potential problems?
 - High energy e[±] losses 'near' the IP:
 - what is reasonable tolerance level (TWM: 'a few ten per train"?)
 - how near is 'near' ?

How far upstream of the IP do electromagnetic debris matter ?

Can showers produced by full-energy e^{\pm} 10-20 m from the IP on the <u>incoming beam</u> side cause substantial backgrounds, in view of ?

