#### Discussion items for luminosity measurements at the ILC

David Strom – University of Oregon

• My suggestions are based on my experience with the LEP I OPAL luminosity measurement:

 $\Rightarrow$  This was an enormous effort based on work of scores of people between (1990 conception) to 2000 (final publication)

## Eur. Phys. J., C14 (2000)373-425

 $\Rightarrow$  Most recent result (measurement of  $\alpha_{QCD}$ ) running just accepted for publication

### CERN-EP-2005-024

• Impossible to measure luminosity

# $\frac{1}{\theta^3}$

distribution without small radial bias and very good resolution

 $\Rightarrow$  Best to measure position of the electromagnetic shower rather than electron track

 $\Rightarrow$  Since the radial measurement must be very well understood arrange other cuts to remove only a few events

• Example electromagnetic spectrum with and without acollinearity cut



Snowmass 05

• Use very tight acollinearity cut for energy tune-up



Snowmass 05

• Make detector uniform so that no fiducial cuts in  $\phi$  etc will be needed.

• What will the background from off-momentum beam particles be? Depends on vacuum near the interaction region.

 $\Rightarrow$  Don't make the pads too big in either radius or phi, need to separate background clusters from real Bhabhas.

• Background from low momentum pairs will probably be more important

 $\Rightarrow$  Detector must be able to measure "min-bias" shape of background on a bunch-by-bunch basis

### **Detector Geometry**

• It is essential to survey the detector at the micron level with cosmic ray muons or test beam.

 $\Rightarrow$  Electronics must have MIP sensitivity even if it is not needed by the luminosity measurement

 $\Rightarrow$  MIP sensitivity needed for possible muon veto (See Graham Wilson's Calorimeter talk).

- Detectors should fit on a single wafer
- SiD geometry  $R_{min} \simeq 8.7 \text{ cm} (\sim 50 \text{mrad})$   $R_{max} \simeq 24.7 \text{ cm} (\sim 150 \text{mrad})$  $\Rightarrow 8 \text{ inch wafers would be needed}$
- Rate at 500 GeV is  $\sim$  8 bhabhas bunch train – Inner radius could be much larger and 6 inch wafers used Snowmass 05 6



### Is this segmentation reasonable?

• Assume 20 layers, 1  $X_0$  and 2  $X_0$ 

• Assume two readout chips/wafer (128 channels/chip)  $2 \times 16 \times 20 \times 2 = 1280$  electronics chips

• Assume Successive Approximation ADC with 12 bits + range, digitizing at 3MHz (internal clock is 36MHz). Data rate is 576 MBytes/s/chip during bunch train ( $\sim$  3.0MBytes/s sustained)

• On board electronics cost will be dominated by development costs (very similar to run needed for test beam)

• Won't save much money by reducing channels/wafer

• Power consumption should be reasonable, but no design yet for cooling in the endcap in SiD. LDC will be easier.

- Biggest unsolved problem: How to avoid gaps in end cap/lum cal coverage
  - VTX-Elec Lumi Ele Cal Beam Cal Lumi Cal VTX-Elec nces LAT LCAL 100
    - 200 300 23 August 05 - David Strom - UO

Good but impossible to open

Has dead area between LAT and endcap