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ECAL Design Requirements

e Optimal contribution to the reconstruction of multijet events:

— EXxcellent separation of v's from charged particles
Efficiency > 95% for energy flow

— Excellent linkage of ECAL with tracker (important for SiD)
— Good linkage of ECAL with HCAL
— Good reconstruction of wi, detection of neutral hadrons

— Reasonable EM energy resolution (~ 15%/VE)

Physics case: jet reconstruction important for many physics processes.
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e Longitudinal Sampling, 30 layers needed for EM energy resolution

o X
% ~20%/%
X is the sampling in radiation length.

e Useful for K9 tracking, etc.

e Can tolerate small,
random inefficiency
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Resolution of 5 GeV photon
insensitive to threshold

Eckhard von Toerne, LCWSO05
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e Energy a bit worse at Iov2§c/> energy for 20 4+ 10 configuration
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Importance of Granularity

e Figure of merit for energy reconstruction is
frp Req
\/Rﬂ + (4dpad)2

where R, is the Moliere radius, d,.q is the detector pad size and Ry
is the inner radius of the calorimeter

Example (OPAL SiW luminosity monitor, 1Xg radiator, 3mm gap)

OPAL
e Photons resolved to % of & [T RARERRREERARAARARARRRE
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e [ he costs of the calorimeters, coil, and muon system have

n
cost x R

where n is ~ 2 — 3.

e Thus a 10% increase in the Moliére radius of the calorimeter leads
to a > 20% increase in cost of the detector for constant fe.

e Conclusion: try and make the calorimeter as dense as possible
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Critical parameter: gap between tungsten layers.

20 Radius to calorimeter = 1.25m
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Calice 3mm gap with 1.7m TESLA radius gives f?cMz — 13mrad
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Silicon Concept

. Sample Pixel Trace Connections
e Readout each wafer with a

. . ’5'. '.' 'S".'.'.‘e‘
single chip e te0e0e0geses teseese
D000

e Bump bond chip to wafer

e [0 first order cost indepen-
dent of pixels /wafer

e Hexagonal shape makes op-
timal use of Si wafer

e Channel count Ilimited by
power consumption and area
of readout end chip

Traces for cable

6 inch ¢ 152mm) Dia  Wafer

e May want different pad lay- Readout Chip connection

out in forward region

Snowmass 05 9 23 August 05 — David Strom — UO



Critical parameter: minimum space between tungsten layers.

Cable |
Shield Heat Path
Foam
Readout Chip 2.5mm
Bump Bonds
—— I | -

77777/ 227777077 fmm

X - -

Bonds Lower shield Silicon

e Cartoon represents my personnel view

e Note elimination of on—wafer capacitors and the addition of upper and
lower shields. Requires low resistance connection between and upper
and lower side of wafer

e Bias may require an additional connection (figure assumes top side
bias)
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Cable Concept
(UC Davis)

e Anchor cables at vertices
e Tungsten plates held off
by spacers at vertices
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Silicon Detector Design

e DC coupled detectors
(avoids bias resistor net-
WOrk)

e [ wo metal layers

e Keep Si design as simple as

. 300 um
possible to reduce cost a

e Cross talk looks small with
current electronics design

e Trace capacitances (up to
30pF) are bigger than the
5pF pixel capacitance
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Ten Hamamatsu detectors are in hand
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Measurements on Silicon Detector Prototypes

Leakage Current Looks Fine:

N
N N
N a o
T T
|

Leakage current (nA)

=

o

a
I

15 |- * -

0.75 |- o* .
r o0 ]
05 - 00%%0,%% ° ]

0.25 |

07\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\
0 10 20 30 40 50 60 70 80 90 100

Bias Voltage (Volts)

(10nA for 1us gives only 250 electrons noise)
NB: Neighboring pixels are not grounded.
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Note edge pixels have larger currents. In these tests the guard ring was

left floating.

Spot check of leakage current in one quadrant is as expected.
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= Measurement of resistance slightly larger than nominal

Series resistance for 1lum by 6 um :

Expected (pure Al) Measured

47 Q/cm (57 £2)Q2/cm
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Expected contributions to detector capacitance:

e 5.3pF from pixel capacitance (Cgeom for 325um Si)

e ~ 20pF for sum of trace capacitance and capacitance from other
traces connecting to other pixels. (Csiray)

e Pixels under the bump-bond array have additional stray capacitance
from probing and bonding pads (currently ~ 100pF)

Expected curves

Viaept Vai
Cstra,y + Cgeom\/Vbieai+Vbzi Vhias < Vdep

Cstray + Cgeom Vbias > Vdep

Q
)
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Q
)
|
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Sample stray capacitance measurements obtained from a fit to the CV
curve and calculation:

Pixel Column Row Calculated Capacitance(pF) Measured Capacitance(pF)

567 I 9 23.35+0.61 25.07+£0.25
564 7 15 22.961+0.61 24.70+0.24
561 I 21 22.561+0.61 24.231+0.24
558 I 27 22.174+0.61 23.604+0.21
515 5 3 44.00=+0.90 46.55+0.42
512 5 9 21.631+0.61 22.55+0.23
509 5 15 21.1840.61 22.061+0.22
506 5 21 20.73+£0.61 21.73£0.22
503 5 27 20.284+0.61 21.004+0.20

= Measurement agrees with expectation for 0.9 ym thick oxide
and 6pm wide traces (3.1 pF/cm).
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Spot check of capacitances in one quadrant is as expected.
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Impact of Detector Technology on Detector Design

= In a warm machine, exceptional pixels with large capacitance or series
resistance lead to degraded time tag measurements

e Small impact on tagging performance since bad channels can be de-
weighted in determining the average time of a track

= In a cold machine, exceptional pixels with large capacitance or series
resistance lead to a higher rate of noise events in buffers

e Could lead to inefficiency late in the bunch train due to buffer overflow
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Examples of capacitances
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Note that all pixels in a given row have nearly the same capacitance:
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A simple model is under development for use in Monte Carlo simulations:

N

o

o
\

ce(pF)
®
o
L

capacit
o N b~ O
o O O O

(0]
o
L1l ‘ L1l ‘ L1l ‘ L1l ‘ L1l ‘ L1l ‘ L1l

A O
o O
|

0 o5

(Over estimates capacitance in region b because of unused channels in the 32 x 32
channel array)
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e For areas near the edge of the detector fundamental limit to noise is
given by (for e.g. correlated double sampling)

KT _ 1
BNCp, ~ Ctoty |4~ 5 R~
(&

where Rs is the series resistance, C; and 7 is the shaping time of the
electronics.

e For m = 1us, Rs = 580%2 and Ci,+ = 40 pF this gives ~600 electrons
noise, which is not really a problem.

e \We can slightly improve noise performance by decreasing the trace
width, perhaps by a factor of 2, i.e.

ENCRS X \/E

where w is the trace width.
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e In region b, near the bump / .............. \
bonding array, we will have a // ---------------
large number of traces crossing '\)*
a pixel. No series resistance, but \ ______________________
amplifier FET noise similar: .~ . / _____

Zlﬁ}}]iﬁjjiiiijj{;iijiij

Possible ways to decrease capacitance in region b:
e Move probing pads on to pixels.
e Decrease trace width in area near central pixels, here

ENCagmp x w

e Use a long skinny chip (e.g. 100 um x 600 pm grid)
After these three measures, worst case capacitance is ~70 pF.
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Test Setup for Cosmics, Sources and Laser

e Modified probe station, allows
laser to be target on entire de-
tector

e IR microscope objective used
to focus laser to ~ 10 um spot

e Bias applied to backside of de-
tector using insulated chuck

Snowmass 05
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Test Setup — detector probing

e Contact made to test pads on
bump bonding array using an AC
probe

e Cables add ~ 20 pF of ad-
ditional capacitance, but noise
performance is somewhat better
than readout chip

o Use AMPTEK 250F preamp,
shapers with 7 ~ 1us and a dig-
itizing oscilloscope to mockup
expected electronics

e PC board with 1cm x 1 cm sil-
icon pad detector used for cos-
mic trigger visible under chuck

Snowmass 05
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Response of detectors to Cosmics

(Single 5mm pixel) AC Probe

. . Silicon Detector ~ /- )
Simulate LC electronics

Vacuum Chuck —

noise somewhat better >
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Errors do not include ~ 10% calibration uncertainty (no source calibration)
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Response of Detectors to 60KeV Gamma’'s from Am?241

Entries/mV
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Possible ~ 1% wafer-wafer calibration?

Width of distributions corresponds to ~ 1000 electrons noise. Pixels under test are on outer edge of

wafer — includes larger series resistance contribution than cosmic data.
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Mean value versus capacitance
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Slope is determined by “dynamic’ capacitance of our laboratory elec-
tronics Cyyy ~ 790pF
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fit noise
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Noise is consistent with expectation from capacitance and series resis-
tance
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Crosstalk

e Positive crosstalk is a function of the dynamic capacitance, Cdyn of
the electronics and the typical trace—pixel capacitance Ceoup, ideally

Ccoup

<< 1%

Xtalk =
dyn

(A few channels with parallel traces in region b will have larger cross
talk)

e Nlegative crosstalk comes from finite bypass capacitance of bias side.

e \With no bypass and all pixels depleted this would
1

be 1552

e In lab this ratio is about sgs5 for 10nF bypass

capacitor

e All crosstalk observed with lab electronics is much below the 1% level
— quantitative analysis underway.
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Signal (MIPS)

Laser Studies

A= 1064 nm

IR penetrates into
wafer

Allows controlled

study of large and
small pulses
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Conclusions

e A narrow gap silicon—tungsten detector for LC physics is attractive

e First round of prototype silicon detectors perform as expected

e Detectors can be produced with workable values of stray capacitance
and series resistance
= some minor changes needed for cold design

e Detailed model of noise and crosstalk will shortly be available for
Monte Carlo simulations
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Backup
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Can we get the heat out?

Back of the envelope calculation
of change in temperature:
e [ hermal Conductivity of W
alloy 120W/(K-m)
e T hermal Conductivity of Cu
400W/(K-m)

Need to reduce heat to below
100mW /wafer.
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Other more radical alternatives

e Polyimide (kapton) can be used instead of SiO, as insulator for
traces

e Oxide thickness to 5um possible.

e Minumum trace with probably 10um

e Could reduce stray capacitances by a factor of 2 or more

Hamamatsu does not currently provide metal-on-polyimide products,
but we could increase the thickness of the wafer and the SiO».

SINTEF (Norway) may be producing detectors based on 6 inch wafers
with metal-on-polyimide within the next year. ( Possible collaboration
with Brookhaven to produce masks.)
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