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ECAL Design Requirements

• Optimal contribution to the reconstruction of multijet events:

– Excellent separation of γ’s from charged particles

Efficiency > 95% for energy flow

– Excellent linkage of ECAL with tracker (important for SiD)

– Good linkage of ECAL with HCAL

– Good reconstruction of π±, detection of neutral hadrons

– Reasonable EM energy resolution (∼ 15%/
√

E)

Physics case: jet reconstruction important for many physics processes.
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• Longitudinal Sampling, 30 layers needed for EM energy resolution
σE
E ∼ 20%

√
X
E

X is the sampling in radiation length.

• Useful for K0 tracking, etc.

• Can tolerate small,

random inefficiency

Resolution of 5 GeV photon

insensitive to threshold
Eckhard von Toerne, LCWS05
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• Energy a bit worse at low energy for 20 + 10 configuration

• Energy much better at high energy for 20 + 10 configuration
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Importance of Granularity

• Figure of merit for energy reconstruction is

fE '
Rcal√

R2
M + (4dpad)

2

where RM is the Molière radius, dpad is the detector pad size and Rcal
is the inner radius of the calorimeter

Example (OPAL SiW luminosity monitor, 1X0 radiator, 3mm gap)

• Photons resolved to 1
2 of

Molière radius

• Pads must be at least 2×
smaller
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• The costs of the calorimeters, coil, and muon system have

cost ∝ Rn
cal

where n is ∼ 2− 3.

• Thus a 10% increase in the Molière radius of the calorimeter leads

to a > 20% increase in cost of the detector for constant fe.

• Conclusion: try and make the calorimeter as dense as possible
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Critical parameter: gap between tungsten layers.

Config. Radiation Molière
length Radius

100% W 3.5mm 9mm
92.5% W 3.9mm 10mm
+1mm gap 5.5mm 14mm
+1mmCu 6.4mm 17mm

Assumes 2.5mm thick tungsten ab-

sorber plates
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Calice 3mm gap with 1.7m TESLA radius gives RM
RCal

= 13mrad
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Layer Assembly 
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Silicon Wafers

Polyimide Cables

Rolled Tungsten 

Inner Tracker
1.25m

ECAL

Si-W Calorimeter Concept

Transverse Segmentation ~5mm

Energy Resolution  ~15%/E
30 Longitudinal Samples

1/2
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Silicon Concept

• Readout each wafer with a

single chip

• Bump bond chip to wafer

• To first order cost indepen-

dent of pixels /wafer

• Hexagonal shape makes op-

timal use of Si wafer

• Channel count limited by

power consumption and area

of readout end chip

• May want different pad lay-

out in forward region
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Critical parameter: minimum space between tungsten layers.

Silicon

Heat Path

Readout Chip
Bump Bonds

Bonds

Foam

Cable
Shield

Lower shield

• Cartoon represents my personnel view

• Note elimination of on–wafer capacitors and the addition of upper and

lower shields. Requires low resistance connection between and upper

and lower side of wafer

• Bias may require an additional connection (figure assumes top side

bias)
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Cable Concept

(UC Davis)

• Anchor cables at vertices

• Tungsten plates held off

by spacers at vertices
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Silicon Detector Design

• DC coupled detectors

(avoids bias resistor net-

work)

• Two metal layers

• Keep Si design as simple as

possible to reduce cost

• Cross talk looks small with

current electronics design

• Trace capacitances (up to

30pF) are bigger than the

5pF pixel capacitance
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Ten Hamamatsu detectors are in hand
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Measurements on Silicon Detector Prototypes

Leakage Current Looks Fine:
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(10nA for 1µs gives only 250 electrons noise)

NB: Neighboring pixels are not grounded.
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Spot check of leakage current in one quadrant is as expected.
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Note edge pixels have larger currents. In these tests the guard ring was

left floating.
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⇒ Measurement of resistance slightly larger than nominal

Series resistance for 1µm by 6 µm :

Expected (pure Al) Measured

47 Ω/cm (57± 2)Ω/cm
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Expected contributions to detector capacitance:

• 5.3pF from pixel capacitance (Cgeom for 325µm Si)

• ∼ 20pF for sum of trace capacitance and capacitance from other

traces connecting to other pixels. (Cstray)

• Pixels under the bump-bond array have additional stray capacitance

from probing and bonding pads (currently ' 100pF)

Expected curves

Ctot = Cstray + Cgeom

√
Vdep+Vbi
Vbias+Vbi

Vbias < Vdep

Ctot = Cstray + Cgeom Vbias > Vdep
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Sample stray capacitance measurements obtained from a fit to the CV

curve and calculation:

Pixel Column Row Calculated Capacitance(pF) Measured Capacitance(pF)
567 7 9 23.35±0.61 25.07±0.25
564 7 15 22.96±0.61 24.70±0.24
561 7 21 22.56±0.61 24.23±0.24
558 7 27 22.17±0.61 23.60±0.21
515 5 3 44.00±0.90 46.55±0.42
512 5 9 21.63±0.61 22.55±0.23
509 5 15 21.18±0.61 22.06±0.22
506 5 21 20.73±0.61 21.73±0.22
503 5 27 20.28±0.61 21.00±0.20

⇒ Measurement agrees with expectation for 0.9 µm thick oxide

and 6µm wide traces (3.1 pF/cm).
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Spot check of capacitances in one quadrant is as expected.
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Impact of Detector Technology on Detector Design

⇒ In a warm machine, exceptional pixels with large capacitance or series

resistance lead to degraded time tag measurements

• Small impact on tagging performance since bad channels can be de-

weighted in determining the average time of a track

⇒ In a cold machine, exceptional pixels with large capacitance or series

resistance lead to a higher rate of noise events in buffers

• Could lead to inefficiency late in the bunch train due to buffer overflow
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a.)

b.)

c.)

Examples of capacitances
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Note that all pixels in a given row have nearly the same capacitance:
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A simple model is under development for use in Monte Carlo simulations:
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(Over estimates capacitance in region b because of unused channels in the 32 × 32

channel array)
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• For areas near the edge of the detector fundamental limit to noise is

given by (for e.g. correlated double sampling)

ENCRs ∼ Ctot

√
4

KT

q2e
Rs

1

2τ

where Rs is the series resistance, Cd and τ is the shaping time of the

electronics.

• For τ = 1µs, Rs = 580Ω and Ctot = 40 pF this gives ∼600 electrons

noise, which is not really a problem.

• We can slightly improve noise performance by decreasing the trace

width, perhaps by a factor of 2, i.e.

ENCRs ∝
√

w

where w is the trace width.
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• In region b, near the bump

bonding array, we will have a

large number of traces crossing

a pixel. No series resistance, but

amplifier FET noise similar:

Possible ways to decrease capacitance in region b:

• Move probing pads on to pixels.

• Decrease trace width in area near central pixels, here

ENCamp ∝ w

• Use a long skinny chip (e.g. 100 µm x 600 µm grid)

After these three measures, worst case capacitance is ∼70 pF.
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Test Setup for Cosmics, Sources and Laser

• Modified probe station, allows

laser to be target on entire de-

tector

• IR microscope objective used

to focus laser to ∼ 10µm spot

• Bias applied to backside of de-

tector using insulated chuck
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Test Setup – detector probing

• Contact made to test pads on

bump bonding array using an AC

probe

• Cables add ∼ 20 pF of ad-

ditional capacitance, but noise

performance is somewhat better

than readout chip

• Use AMPTEK 250F preamp,

shapers with τ ' 1µs and a dig-

itizing oscilloscope to mockup

expected electronics

• PC board with 1 cm × 1 cm sil-

icon pad detector used for cos-

mic trigger visible under chuck

Snowmass 05 29 23 August 05 – David Strom – UO



Response of detectors to Cosmics

(Single 5mm pixel)

Simulate LC electronics

(noise somewhat better)
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Response of Detectors to 60KeV Gamma’s from Am241
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Possible ∼ 1% wafer-wafer calibration?

Width of distributions corresponds to ∼ 1000 electrons noise. Pixels under test are on outer edge of

wafer – includes larger series resistance contribution than cosmic data.
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Mean value versus capacitance
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Snowmass 05 32 23 August 05 – David Strom – UO



0

250

500

750

1000

1250

1500

1750

2000

0 250 500 750 1000 1250 1500 1750 2000 2250
noise

fit
 n

oi
se

Noise is consistent with expectation from capacitance and series resis-

tance

Snowmass 05 33 23 August 05 – David Strom – UO



Crosstalk

• Positive crosstalk is a function of the dynamic capacitance, Cdyn of

the electronics and the typical trace–pixel capacitance Ccoup, ideally

Xtalk =
Ccoup

Cdyn
<< 1%

(A few channels with parallel traces in region b will have larger cross

talk)

• Negative crosstalk comes from finite bypass capacitance of bias side.

• With no bypass and all pixels depleted this would

be 1
1024

• In lab this ratio is about 1
2000 for 10nF bypass

capacitor

• All crosstalk observed with lab electronics is much below the 1% level

– quantitative analysis underway.
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Laser Studies

λ = 1064 nm

IR penetrates into

wafer

Allows controlled

study of large and

small pulses
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Conclusions

• A narrow gap silicon–tungsten detector for LC physics is attractive

• First round of prototype silicon detectors perform as expected

• Detectors can be produced with workable values of stray capacitance

and series resistance

⇒ some minor changes needed for cold design

• Detailed model of noise and crosstalk will shortly be available for

Monte Carlo simulations
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Backup
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Can we get the heat out?

Back of the envelope calculation

of change in temperature:

• Thermal Conductivity of W

alloy 120W/(K-m)

• Thermal Conductivity of Cu

400W/(K-m)

Need to reduce heat to below

100mW/wafer.
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Other more radical alternatives

• Polyimide (kapton) can be used instead of SiO2 as insulator for
traces

• Oxide thickness to 5µm possible.

• Minumum trace with probably 10µm

• Could reduce stray capacitances by a factor of 2 or more

Hamamatsu does not currently provide metal-on-polyimide products,
but we could increase the thickness of the wafer and the SiO2.

SINTEF (Norway) may be producing detectors based on 6 inch wafers
with metal-on-polyimide within the next year. ( Possible collaboration
with Brookhaven to produce masks.)
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