DHCAL Prototype Construction

José Repond Argonne National Laboratory

Snowmass Workshop August 14 – 27, 2005

Digital Hadron Calorimeter

Fact

Particle Flow Algorithms improve energy resolution compared to calorimeter measurement alone

Assumption

Confusion term is the dominant contribution to jet energy resolution

Particles in jets	Fraction of energy	Measured with	Resolution [σ^2]
Charged	65 %	Tracker	Negligible
Photons	25 %	ECAL with 15%/√E	0.07 ² E _{jet}
Neutral Hadrons	10 %	ECAL + HCAL with 50%/√E	0.16 ² E _{jet}
Confusion	Required	for 30%/√E	≤ 0.24² E _{jet}

Minimize confusion term

Maximize segmentation of calorimeter readout

High segmentation

1 – bit resolution on readout preserves energy resolution for hadrons

18%/√E

Technical implementation

Resistive Plate Chambers (RPCs) Gas Electron Multipliers (GEMs)

DHCAL R&D Goal

Prototype section

1 m³ (to contain most of hadronic showers)
40 layers with 20 mm steel plates as absorber
Lateral readout segmentation: 1 cm²
Longitudinal readout segmentation: layer-by-layer
Gas Electron Multipliers (GEMs) and Resistive Plate Chambers (RPCs) evaluated

Motivation for construction and beam tests

Validate RPC approach (technique and physics) Validate concept of the electronic readout Measure hadronic showers with unprecedented resolution Validate MC simulation of hadronic showers Compare with results from Analog HCAL

Comparison of hadron shower simulation codes by G Mavromanolakis

Choices for HCAL active media

	Scintillator	GEMs	RPCs	
Technology	Proven (SiPM?)	Relatively new	Relatively old	
Electronic readout	Analog (multi-bit) or Semi-digital (few-bit)	Digital (single-bit)	Digital (single-bit)	
Thickness (total)	~ 8mm	~8 mm	~ 8 mm	
Segmentation	3 x 3 cm ²	1 x 1 cm ²	1 x 1 cm ²	
Pad multiplicity for MIPs	Small cross talk	Measured at 1.27	Measured at 1.6	
Sensitivity to neutrons (low energy)	Yes	Negligible	Negligible	
Recharging time	Fast	Fast?	Slow (20 ms/cm ²)	
Reliability	Proven	Sensitive	Proven (glass)	
Calibration	Challenge	Depends on efficiency	Not a concern (high efficiency)	
Assembly	Labor intensive	Relatively straight forward	Simple	
Cost	Not cheap (SiPM?)	Expensive foils	Cheap	

Entries in

Status of DHCAL Active Detectors

Measurement	RPC Russia	RPC US	GEM
Signal characterization	yes	yes	yes
HV dependence	yes	yes	ongoing
Single pad efficiencies	yes	yes	yes
Geometrical efficiency	yes	yes	no
Tests with different gases	yes	yes	yes
Mechanical properties	?	yes	no
Multipad efficiencies	yes	yes	ongoing
Hit multiplicities	yes	yes	yes
Noise rates	yes	yes	ongoing
Rate capability	yes	yes	no
Tests in 5 T field	yes	no	no
Tests in particle beams	yes	planned	planned
Long term tests	ongoing	ongoing	ongoing
Design of larger chamber	yes ongoing		ongoing
	Virtu all F comp	ually R&D oleted	Catching up

Default RPC chamber designs

Layer	Russia	US
Resistive layer anode	Anode readout pads	1÷50 MΩ/□
Glass thickness in [mm]	0.55	1.1
Gas gap in [mm]	1.2	1.2
Glass thickness in [mm]	0.85	1.1
Resistive layer cathode	~1 MΩ/□	1÷50 MΩ/□

Electronic Readout System for Prototype Section

400,000 readout channels

Conceptual Design of Readout System

Front-end ASIC and motherboard

- II Data concentrator
- III Super Concentrator
- IV VME data collection

V Trigger and timing system

Specification of system

To The Utersensens of Lowe

Conceptual Design of the Readout System for the Linear Collider Digital HCAL Prototype Detector

> John Dawson, Gary Drake, José Repond, Lei Xia Argonne National Laboratory

John Butler, Menakshi Narain Boston University

Jim Hoff, Abder Mekonani, Raymond Yarema Fermi National Accelerator Laboratory

> Edwin Nobeck, Yasar Onel University of Iowa

Andy White, Jaehoon Yu University of Texas - Arlington

> Version 1.10 July 25, 2005

Document almost ready

To be released later this month

Contains all details of system

Basis for design work Currently 57 pages

Document written by Gary Drake

Multiplexing

Component	#/chamber	#/plane	#/channels/unit	Total # of units
Planes	0.333	1	9216	40
Chambers	1	3	3072	120
DCAL ASIC	24	144	64	5760
FE motherboards	2	6	1536	240
Data concentrators	4	12	768	480
Super concentrators	0.667	2	4608	80
Data collectors	-	0.166	55,296	7
VEM crates	-		387,072	1

Common development for RPC and GEM based Digital Hadron Calorimeter

Parameter	RPCs	GEMS
Туре	Avalanche	(Gas)
Geometry	1cm x 1 cm Pads	1 cm x 1 cm Pads
Capacitance	10-100 pF	10-100 pF
Smallest Signal	~100 fC	~5 fC
Pulse Width	~5 nS	~3 nS
Rise Time	~2 nS	?
Largest Signal	~10 pC	~100 fC
Noise Rates	~0.1 Hz	?
Env. Noise Susceptibility	Low	Low

Front-end ASIC...

64 inputs with choice of input gains RPCs (streamer and avalanche), GEMs... Triggerless or triggered operation

100 ns clock cycle

Output: hit pattern and time stamp

Design work at FNAL

Abderrezak Mekkaoui James Hoff Ray Yarema

Design work started in June, 2004 Prototype run submitted on March 18th 2005

40 unpackaged chips in hand

Tests started: so far looks good

Cooling...

Chip consumes about 300 mW (measured)

144 chips/plane \rightarrow 50 W/plane

Thermal conductivity of steel not sufficient to dispose of heat

Copper factor of 10 better than steel

Consider replacing 4 mm support plates with copper plates

Cost? Magnetic properties not relevant for testbeam Properties for EM and HAD showers similar

Material	A/Z	λ _ι [cm]	X ₀ [cm]	λ _I /X _o	t _{passive} ≡ 4λ _l [cm]	Number of layers	t _{active} / layer [mm]
Fe	56/26	16.8	1.8	9.3	67	38	8.7
Cu	64/29	15.1	1.4	10.8	42	60	9.5

Copper (4 mm)

Front-end boards...

2 boards/chamber or 6 boards/plane 8 layer boards Overall thickness < 3 mm

Functionality

Houses ASICs (24) Provides readout pads for RPCs Routes signals to ASICs Distributes power and ground to ASICs Distributes clocks and control signals to ASCIs Routes output signals (LVDS) to receivers

} Analog signals

} Slow control

} Digital signals

Design challenge

$\textbf{Digital} \rightarrow \textbf{analog crosstalk...}$

- Measurements with test board
- LVDS signals routed close to pads
 - 4 different configurations
 - Each with 4 different distances to the center of the pads
- First results encouraging, more tests needed...

Data concentrators...

Read out 12 ASICs (serial lines) Located on sides of section Can buffer events Distribution of trigger and timing (bus connection) Essentially FPGAs <u>All transmissions in LVDS</u>

Super concentrators...

Introduced by urge to reduce cost (VME)

Reads out 6 data concentrators

Located on side of module

Similar design to data concentrator

Data collector...

VME based system

Each card reads out 12 super concentrators

Need only 7 cards and 1 VME crate

Work by Lei Xia

Study of rates...

Simulation of response of 1 m³ prototype section to 50 GeV π^+

Study of number of data rates in different components of readout system

System capable of handling ~10x more data than expected **Readout speed** Average number of ASICs in a given data concentrator 10 Mb/sec Examples... 136.21 3.8 3.6 34 3.2 3.0 25 2 2 -2.0 50GeV Pi-35 Number of ASICs in any data concentrator Entries Mean : 2400000 2,4436 30 Rms 1.6141 OutOfBange 2105679 No N -4211358 10 25 20 15 103 10 10 5 10 50 75 100 125 150 175 200 225 N of asics (64ch) with at least 1 hi 10

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

6.0 6.5 7.0 7.5

Number of ASICs fire

8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5

Number of ASICs in a given event

List of electronics subtasks

1	Overall engineering and design	ANL
2	ASIC engineering and design	FNAL
3	ASIC testing	ANL
	Test board design	FNAL
	Test board production	
	Measurements	
4	Front-end PC board engineering and design	ANL
	prototyping and testing	FNAL
5	Data concentrator engineering and design	ANL
	prototyping and testing	Chicago
6	Data super concentrator engineering and design	ANL
	prototyping and testing	Chicago
7	Data collector engineering and design	ANL
	prototyping and testing	Boston
8	DAQ system: VME processor and programming	Washington
9	Timing and trigger system engineering and design	UTA
	prototyping and testing	
10	High voltage system	lowa
11	Gas mixing and distribution system	lowa

Mechanical Structure

CALICE builds versatile structure

Absorber 20 mm Steel \rightarrow 1 X_0 sampling 40 layers \rightarrow 4 λ_l at 90^0

Recent simulation studies indicate that Tungsten with

Thickness of 0.7 cm \rightarrow 2 X_0 sampling 58 layers \rightarrow 4 λ_l at 90^0

might result in better PFA performance and safe cost

a) Do we need to test a Tungsten prototypeb) If yes, can we re-use the CALICE structurec) What is the optimum sampling depth for W

Cost estimate (M&S only)...

Item		Cost		Serial No.
Resistive Plate Chambers	Resistive Plate Chambers			
Front-End ASIC		\$225,000		N
Front-end Readout Boards		\$50,000		t
Data Concentrator Boards		\$85,000)	
Data Collector System		\$60,000	}	\$20
Power Supplies, Optical Fibers, HV		\$60,000	J	
Grand total	\$500,00	0 + 50% co	ontinge	ency

Not yet updated to reflect latest developments

\$200,500

Item		Cost	
GEMs		\$200,000	
Front-End ASIC	\$75,000		
Front-end Readout Boards		\$50,000	
Remaining systems from RPCs		\$0	
Additional for GEMs \$325,000 +		50% conti	ngency

Recent Proposals to Funding Agencies...

Agency	Institutes	Request	Award
LDRD (ANL directorate) used for manpower mostly	ANL	400,000	?
LCRD (DOE)	ANL, Boston, Chicago, Iowa	105,000	38,000
LCRD (DOE)	UTA, Washington	105,170	35,500
U of C Collaborative Grants	ANL, Chicago	100,000	0
US-Japan	ANL (LBNL, Oregon, SLAC…)	50,000	0
MRI 3 calorimeter prototypes	ANL, Oregon, UTA	964,000	0

Time scales

2005	Russia	Equip 1 m ² with Minsk-based readout (32 x32 channels)		
	US	Develop and test design of larger chambers		
	GEMs	Cosmic ray studies with stacks of GEMs		
	GEMs	Initiate long foil production and testing		
	US	Prototype ASICs: finalize design		
	US	Specify remainder of readout system (released soon)		
	US	Design and prototype all subsystems		
2006		Produce chambers		
		Produce ASICs Only possible if funded		
		Produce other subsystems		
2007		Move to test beam		
		Take data Tune Hadron		
2008		Take data Simulation		
		Design LC hadron calorimeter		