

SiPM readout – experience and prospects

Felix Sefkow DESY CALICE collaboration

ALCPG workshop at Snowmass August 23, 2005

- SiPM mass production and tests
- Experience with multi-channel readout
- Future directions

SiPM 1st selection stage

- At the producer (PULSAR, Moscow)
- Uncut wafer on probe station
- Test response to light (given signal amplitude) with not too high noise
- Up to 1000 / day

31 HIS I				
File 481_4_14.def				
t i me	is: 15:57;	data: 20	5.4.2005;	
type: B				
ATA				
×	U	0(0)	I(BKA)	comment
-17	-4	23.4071	44.1610	bad
-16	- 14	23.4213	44.1637	bad
-15	— J ş	39.3215	1.2410	WORK
-14	- 14	40.4247	1.2902	work
-13	-4	35.7515	32.8656	bad
-12	-4	48.7856	1.3321	work
-11	- 4	41.8897	1.4481	WORK
-16	-4	48.8466	1.7186	work
-0		41.3195	1.1611	work
-8	- 4	41.2988	1.1396	WORK
-7	- 4	41 6140	1 2387	mark
- A		41.7495	1 0700	wark
-č		44.9894	4.4895	wark
		41 0214	1 2842	work
-9		41.7322	1 1388	work
3		97 9549	20 2600	dicebawge
- A		a7.850a	4 0004	discharge
	-4	42.2476	1.0396	WOP R
5	-4	42.2311	2.0090	MOL K

2nd stage: test bench

- After assembly on precision mounting plate
- Semi-automatic set-up at ITEP
- 15 SiPMs under monitored light source (calibrated with reference tile: "MIP")
- Adjust working point (HV) to 15 px / "MIP"
 - Compromise between MIP efficiency and dynamic range
- Up to 500 / week

SiPM selection

- Automatic fitting procedure
- Selection criteria at W.P.
 - Ped RMS < 50 ADC channels
 - Gain > 4*105 or 1 pixel > 26 ADC ch., corresponds to 1 pC/MIP
 - Cross talk < 0.35
 - At HV adjusted |Npix/MIP 15| < 0.75
 - Noise frequency at zero threshold < 2.5 MHz
 - Noise frequency at ½ MIP threshold < 500 Hz
 - Single photoelectron peak width to gain ratio < 0.20
 - Mean value of SiPM current < 2 μA
 - RMS of SiPM current during test < 20 nA
 - Number of pixels at maximal light (~200 MIP) > 900

SiPM data sheets

- Many more SiPM parameters measured and stored in a data base
 - Temperatures, HV depnedences, saturation behaviour,...

3rd stage: light yield

Samples for cassettes

- Tiles are grouped according to bias voltage
 - 108 / half module
 - +- 2V adjustment range

Limited room for optimization

- Gain 3% / 0.1V, LY 7% / 0.1V
- Gain equalization would increase LY spread

SiPM summary

- Mass production and quality control chain established
- Samples of few 1000 SiPMs under study now
- Long term stability tests become possible

Calibrating & monitoring SiPMs

Two scales:

- Energy scale is set by MIP response
- SiPM response and saturation is measured in pixels
- Non-linearity correction requires LY in pixels / MIP for each channel together with universal response function
 - Need fast shaping to avoid noise pileup
 - By-product: directly observe SiPM gain: auto-calibration

Front-end electronics

- ILC-SiPM chip: 18ch Pre-amplifier, shaper, track and hold, mux
 - based on CALICE SiW ECAL chip

HCAL readout architecture

First modules

Multi-channel tests

- Simultanous gain measurement (with one LED)
- Will be 216 "stamps" with calibration board (12 LEDs)

Optimization of light amplitude spread ongoing

- Only one adjustable delay for HOLD per cassette
- Timing uniformity OK

- Delay scan: latency sufficient for fast trigger
- and not too long readout cables

DESY testbeam

In-situ light yield

100

50

- With test beam electrons
- Single pixels signals (LED, calibration mode)
- MIP signal (physics mode)
- Cross-calibration: LED (5-10 MIP)
- Systematics (few %) mostly due to fitting procedure

$$LY = \frac{A_{MIP}}{gain} * \frac{A_{LED}^{calib}}{A_{LED}^{physic}} = 15 \ px \ / \ MIP$$

1000

1500

500

M.Groll.

2500

2000

Commissioning

- The electronics chain successfully established in multi-channel mode
- Much more to do:
 - Reproducibility
 - Uniformity
 - Non-linearity
 - Integration of calibration electronics
 - Monitoring, stability
 - Multi-layer tests
 - ECAL integration
 - Testbeam integration

Ongoing studies, single channel (not easy)

Beyond testbeam

- The "physics prototype" name is misleading it is a testbeam calorimeter and not a technical prototype
- Technical solutions scalable to a full detector need to be developed
 - Front end electronics and DAQ
 - Readout boards
 - Calibration system
- SiPMs are under rapid development

Front end directions

- The fast SiPM signal can be exploited for auto-triggering; see OPERA ROC [NIM A521 (2004), IEEE NSS 03]
 - Would decouple shaping and latency
 - Would allow calibration with r/a sources - or even noise
- Following the ECAL trail: incorporate the ADC in the front end
 - G.D.A.S.A.P.
 - simpler or higher integrated DAQ

FLC_PHY4

- Variable gain preamy variable shaper
- Pulsed power
- Includes 12bit ADC

C. De La Taille

Readout boards

- The micro-coax cable was a conservative extrapolation of the minical experience
- 1st step: replace cables by PCB
- 2nd step: integrate the ASICs in the PCB
 - See again the ECAL example

- 3rd step: develop full electro-mechanical concept including
 - Signal readout
 - Coupling to SiPMs (and tiles)
 - Calibration system
 - Cooling

Calibration system

- The present system has belts and suspenders
 - Classical LED reference signal (with PIN diode monitoring)
 - Gain calibration with low light intensity
 - Saturation monitoring with large light amplitude
 - Temperature sensors
- Testbeam experience will tell how to simplify:
 - Saturation stable? Less light, fewer fibres!
 - Gain monitoring sufficient? Drop the PIN diodes!
 - Auto-trigger? Use alpha source instead of LED! (A. Karakash)
- I like the LEDs I can't imagine commissioning without...
 - Use both?

- Development driven by bigger markets (PET)
- First tests with Hamamatsu devices reported at LCWS, more details at Beaune conference
 - Performance similar to MEPHI /PULSAR devices, but better sensitivity to blue light
- MEPHI has tested larger area SiPMs
 - Still somewhat noisy
- Large area + blue sensitivity: get rid of the WLS fibre and couple the SiPM directly to the tile edge
 - Big simplification!

0-100-1.5 (100 pixels), U=48.9V, T=22.6C

Conclusion

- SiPMs have just opened a new chapter in scintillator based calorimetry
- The proof-of-principle prototype is well underway
- The technical realization has just begun to emerge there is much room for new ideas.

SiPM noise

Noise drops like exp (-1.5*N_{px})

