RPC as an Active Medium for a Digital HCAL

Lei Xia, Argonne-HEP

Introduction
RPC signal properties and efficiency
Multiple signal pads and digital readout
RPC rate capability
Other studies
Summary

Introduction: what is RPC

• Glass

- Normal floating glass
- Resistive paint
 - Conductive paint
 - Silk screen printing
 - Controlled resistivity (0.1 10 MΩ/□)
- Spacer
 - Fishing line
- RPC is simple and reliable
 - No aging effect for glass RPC
 - Easy to construct, low cost
 - High efficiency and good position resolution
- So far, built over 10 RPCs at Argonne
 - 1 gap / 2gaps
 - Paint resistivity
 - Chamber configuration
 - Chamber size

RPC signal: avalanche and streamer

- Gas mixture
 R134A:I soButane:SF6
 (Ar:R134A:I sobutane)
 Typical operating voltage:
 7 10 KV
- Two types of signal
 - Avalanche
 - 2 10+ mV, 0.2 10 pC
 - High efficiency (>95%)
 - Low noise (~0.2Hz/cm²)
 - Higher rate capability (~100Hz/cm²)
 - Streamer
 - > 100 mV, 100+ pC
 - Efficiency ~90%
 - Lower rate capability (~100Hz/cm²)
 - Multiple (N) streamers per particle passing is normal
 N = 1 - 3
- Avalanche mode is our preferred running mode

RPC signal: efficiency

At higher voltage: streamer region

• For a DHCAL, small signal pads (~

- 1 x 1 cm²) are needed
 - Digital readout
 - Efficiency
 - Cross-talk / charge sharing between pads

RPC multi-pad test: digital readout system

Multiple signal pads: charge sharing

- Avalanche signal has a finite lateral size (~ gap size)
- Charge sharing will occur when a particle passes near pad boundary
- It can be understood with 'black disk' model of charge distribution, with effective radius R(Thr)
 - □ Charge can share between 2 4 pads
 - Hit multiplicity measurement -> R (~1 mm)

Hit-multiplicity: standard chamber

Hit multiplicity: operating voltage

would be good for operating the chamber, concerning hit multiplicity

Hit multiplicity: pads on gas volume

- AIR9 built with one glass sheet
 - Pads face glass volume
 directly, and collect electrons from avalanche
- Amazingly low hit multiplicity
- Reasonable noise rate
 X2, compares with AIR4

(On-board amplifiers)

RPC rate capability

RPC rate capability: AIR4

- AIR4 efficiency (7.3KV) keeps flat until rate > ~50Hz/cm2
 Higher operating voltage gives better rate capability
 Chamber current is not a linear function of particle rate
 Signal charge reduced at high
 - particle rate
- I-V curve for constant (high) rate shows threshold, and then linear response
 - Both signal charge and glass sheets have linear response
 - Can read off directly the effective resistance of the chamber: ~1 GΩ
 - Resistance of glass sheet is in accessible range

RPC rate capability: glass resistance

- 1st measurement, 1.1mm glass sheet
 - **R** = 1.5 GΩ
 - **P**= 4.7 x 10¹⁰ Ωm
 - Can not explain the effective resistivity!
- 2nd measurement: bind signal pads and amplifiers to the glass sheet in the same way as for a real RPC, and power up the amplifiers
 - Glass sheet temperature is ~20°C higher
 - **R** = 0.32 GΩ
 - **□** P= 1.0 x 10¹⁰ Ωm
 - Gas volume has an effective resistance of 0.4GΩ, under constant flux of 300Hz/cm²

Full size RPC, other studies

• One full size RPC was built

- 30.5 x 91.5 cm²
- I gap, 1.2mm
- **Q** Resistive layer: ~ $1M\Omega/Q$
- Signal property is as expected
 - Signal charge, avalanche plateau, etc., identical to small chamber
- Chamber aging study: no aging observed
 - Low rate (~0.1Hz/cm2) running: 2+ years
 - High rate (~100Hz/cm2) running: ~ 30 days (equiv. to 8 years running at ILC rate!)
 - No (signal/noise/structure) change observed
- Other studies

.

Glass bending under pressure and electric force

Conclusion

OWe have built and tested over 10 RPCs, including a full size prototype chamber • We did all the tests we planned to do: Tests with single pad and multiple readout pad Tests with analog and digital readout Test of both large and small chambers Test of rate capability

• We totally understand our detector, and we are ready to build RPCs for the 1m³ test beam section