

# Test s Calibr Gain r Beam Future

Test setup, APDs, preamps
Calibration procedure
Gain monitoring with LED
Beam test results
Future R&D options

## Introduction



- The analog HCAL group of the Calice collaboration built a small scintillator tile hadron calorimeter prototype, the MiniCal, to perform various studies in a test beam at DESY
  - Perform system tests of selected tile-fiber systems
  - ➤ Test performance of various photodetectors
     MAPM → used as reference
     SiPM → (NIM A 540, 368 2005)
     APD's → presented here
  - Establish a reliable calibration procedure for single tiles
  - Monitor system stability & do aging studies
  - Study EM shower development in simulations
  - Test linearity of energy measurements
  - > Measure energy resolution of 1-6 GeV e<sup>+</sup> ( $15 \times 15 \text{ cm}^2$ ,  $\sim 30 \text{ X}_0$ )



## The MiniCal Prototype

- The MiniCal is a 27-layer Fe/scintillator sandwich structure
- Each layer consists of 2 cm thick stainless steal plates and 9 5×5 cm<sup>2</sup>
   0.5 cm thick scintillator tiles housed in a cassette → (~1.15X<sub>0</sub> & 0.12λ)
- The first 12 layers are read out with
   32 APD's plus center tile of layer 13
- Test configuration in DESY test beam
   1-6 GeV e<sup>+</sup>





ILC Workshop Snowmass 08/18/ 97% of 6 GeV shower is contained in 12 layers



#### **MiniCal Tile Readout**



□ 3M super reflector (top, bottom)

## **APD Choice**



- We use Hamamatsu single-channel APDs S8664-55 special (3x3 mm<sup>2</sup>)
- High QE~80%,
- Operate at gains M~100-250
  - → Low noise preamps &
  - → stable power supplies ( $\Delta U/U \sim 10^{-4}$  for 1% gain stability)
  - → stable temperature (1/M dM/dT ~ -4.5%/deg)
- Capacitance 30 pF (fully depleted)
- **Group APDs by similar gains**



Need temperature and HV monitoring ILC Workshop Snowmass 08/18/05 G. E



#### **Comparison of Preamplifiers**



- **П** Туре:
- Signal extraction:
- **Rise/Fall time**:
- □ Voltage supply:

 □ Minsk preamp has better S/N
 9.7±2 ⇔ 3.4±0.7, is smaller in size & has lower power consumption Minsk preamp Charge-sensitive ∫Q dt & shaping 70 ns/350 ns 5 V

60

Stents

Prague preamp Voltage-sensitive Peak sensing & shaping 40 ns/180 ns 10-12 V



Prague preamp has higher dynamic range, better linearity, lower Xtalk

MIP = 44.5

ADC bin

orgaus = 8.6



Test beam results are not affected by differences in properties

ILC Workshop Snowmass 08/18/05

G. Eigen, U Bergen







#### 9 APDs inserted on mask that is mounted to Prague preamplier

APDs mounted to Minsk preamplifiers



ILC Workshop Snowmass 08/18/05





Use 11bit ADC (Le Croy 2249W) with CAMAC-based DAQ



# **Measurement Procedure**



APD Readout scheme:

♦ center tiles: individually, layers 1-13

- edge tiles: 3 tiles from consecutive layers, all tiles in layers 1-12
- corner tiles: 3 tiles of 1 corner from consecutive layers (1-12)
- MIP calibration
  - Use 3 GeV e<sup>+</sup>-beam without absorbers
  - Aim at tile centers along z axis (6 positions)
  - Extract calibration factors for each channel
- Energy scan
  - Use beam energies E<sub>b</sub> from 1 to 6 GeV
  - Determine response in tiles in MIPs
  - Sum up energies of all tiles (in MIPs)



ILC Workshop Snowmass 08/18/05



```
12 layers \Leftrightarrow 13.8 X<sub>0</sub>
\Leftrightarrow 1.44 \lambda
```





ILC Workshop Snowmass 08/18/05

G. Eigen, U Bergen



**J** MIP = Peak - pedestal



# **APD Gain Monitoring with LED**



- Feed blue LED light to all APDs via clear fiber at 10 Hz
- Monitor LEDs with PIN diodes
- **B** 84h period monitoring shows:
  - Temperature variations are <1°C</p>
  - T dependence & APD dependence show mirror behavior
  - APD gain changes are well described by T variations
     Perform corrections offline
- Typical test run period is ~ 5h
   > APD's are stable within 1%









# Simulation of APD Data



Need to relate E<sub>dep</sub> to N<sub>ADC</sub> in MC

Need to determine three factors:

$$N_{ADC} = \frac{N_{ADC}}{N_{pe}} \frac{N_{pe}}{MIP} \frac{MIP}{E_{dep}} E_{dep}$$

- $\square$  MIP/E<sub>dep</sub>: from E<sub>dep</sub> energy deposited in tile & MIP=810 keV
- Solution ⇒ N<sub>pe</sub>/MIP: determined from MIP signal width in data
- $N_{ADC}/N_{pe}$ : determined from MIP signal position in data
- MC simulation gives good description of measured energy distribution in a tile





# Longitudinal Shower Shape











# Linearity



- Sum up MIP contributions of all tiles read out in layers 1-12 for each E<sub>b</sub>
- Fit Gaussian to measured distributions to determine most probable value N<sub>MIP</sub> and resolution σ
- Measured energies & fitted slope parameters of 2 preamp data sets agree within 3%
- Prague preamp
   Minsk preamp
   APD MC
   150
   100
   50
   0
   1
   2
   3
   4
   5
   6
   7
   E (GeV)
- **\Box** See negative intercept at  $2\sigma$  level
- □ Get good agreement with simulation
- Get good agreement with SiPM results



ILC Workshop Snowmass 08/18/05

# **Energy Resolution**



Fit energy resolution to

- Stochastic terms of 2 preamp measurements are in excellent agreement A=21%
- Simulation yields a 3-4% smaller stochastic term wrt data
- Due to limited energy range sensitivity to constant term is reduced (B=0)

$$\frac{\sigma_{\rm E}}{\rm E} = \frac{\rm A}{\sqrt{\rm E[GeV]}} \oplus \rm B$$







Good agreement between APD & SiPM results for linearity & energy resolution





# Systematic Errors

- Record rel LED light of 8 APDs during 7 calibration runs & 7 energy runs (total 5 h)
- Do offline corrections for power supply & temperature fluctuations
  - Systematic uncertainty from time stability is 3%
- Other systematic uncertainties
  - SolutionSolutionSolutionSolution1%
  - Selectronic noise (pedestal) 6%→1%
  - Linearity of ADC
  - School Analysis procedure
  - Beam energy spread



4%→1%

2%→1%





calibration run no.





- Studies with analog HCAL "MiniCal" prototype in e<sup>+</sup> beams at DESY were very successful
  - Results for 2 different preamp choices agree well
  - Simulations of lateral & longitudinal shower profiles are consistent with measured profiles
  - > Measured linearity is reproduced in simulation, simulated energy resolution is 3-4% better than measured  $\sigma_E/E$
  - Measurements of linearity & energy resolution for APD readout are in good agreement with those for MAPM & SiPM readout
  - LED monitoring works well to correct for T & HV fluctuations
  - We gained lots of operational experience for physics prototype
- □ SiPM & APD readout are both viable options for analog tile HCAL
- Presently, we are constructing a 1 m<sup>3</sup> prototype with SiPM readout to study performance in a hadron beam with ECAL in ~1 year

ILC Workshop Snowmass 08/18/05

G. Eigen, U Bergen

# **Outlook: APDs in Analog HCAL**



Particle flow concept requires small cell size
 for AHCAL: 3×3 cm<sup>2</sup> tiles, individually read out
 photodetector needs to be located directly on tile

- APDs wrt SiPMs have high QE & linear response, but need preamp & stable power supply
- For APD readout need 1×1 mm<sup>2</sup> APD with preamp mounted close to photosensor, low V<sub>bias</sub>



3 cm

- **R&D** on alternative readout without WLS fiber:
  - ♦ large-area APDs (25-100 mm<sup>2</sup>) with low V<sub>bias</sub>
  - $\clubsuit$  Scintillators with very long attenuation lengths (>2m)
  - $\$  Super reflector foils with high reflectivity for UV/blue light
- Final choice of photodetector will depend on performance, compact arrangement, and cost per channel
   ILC Workshop Snowmass 08/18/05
   G. Eigen, U Bergen

#### Small-Size APD



- APD chips from Silicon Sensor
   AD 1100-8, Ø 1.1 mm, U<sub>bias</sub>~ 160 V
- □ Chip on PCB with a close preamp





 This APD meets some of future requirements



#### Acknowledgments



Thanks to all members of HCAL CALICE coll., especially those who contributed to these results:

E. Devitsin, J. Cvach, E. Garutti, M. Groll, M. Janata, V. Korbel,

H. Meyer, I. Polák, S. Reiche, F. Sefkow, J. Zálešák







#### **APD Homogeneity**





#### □ 21 APD's tested

- → homogeneity spread  $\sigma$ =3.9±0.3%
- ➔ Systematic uncertainty ~ 5%

□ 1 APD used to read out 1 or 3 tiles





Sum up energies of 93 tiles (in MIPs) for 1-6 GeV beam energies

- Distributions look similar as those for PM & SiPM readout
  - Energy sums for Minsk & Prague preamps look as expected and are in good agreement



# MIP calibration for different HV





- Prague preamp
- HV1 = 434 V
- HV2 = 429 V
- MIP calib factors for central stack



- Compare calibration for 2 data sets with di Prague preamp (gain ratio=~1.67)
- Cell-by cell calibration gives consistent results
- Calibration is well reproducible



Variation of gate widths from 500 ns to 300 ns has no effects

ILC Workshop Snowmass 08/18/05

G. Eigen, U Bergen

## Study of Negative Intercept



- □ Use 1-6 GeV points in fit yields intercept of -(3.6±1.6) MIP
- Use 3-6 GeV points in fit yields intercept of -(1.8±1.8) MI P
- Nonzero intercept is caused by low energy points
- Measured ADC non-linearity of 4%→1% for small signals leads to opposite effect
- Measurements at increased gain of 1.6 by raising U=429 V  $\rightarrow$  U=434 V yields intercept of -(1.5±1.6) MIP









