R&D of Extruded Scintillator

DongHee Kim Kyungpook National University

D. H. Kim, S. H.Chang, S. Mian, J. S. Suh, Y. D. Oh, Y. C. Yang, A. Khan Kyungpook National University

Basic Configuration

➤ Prototype for EM Calorimeter
One Layer: Tungsten 20cm X 20cm X 0.3cm
(example) Scintillator 1cm X 20cm X 0.2cm X 20 strips

→ Total : 30 Layers (~ 26 Xo)

➤ Strip scintillator → possible with extruded scintillator ! moreover, it is cheap!

Current R&D Status

- At first, the pure polystyrene bar was produced without PPO, POPOP
 - → The mechanical process has been established
- At second, PPO and POPOP were mixed up with polystyrene
 - \rightarrow The 1st scintillator had been produced.
- Many scintillators have been produced with different situations since then.
 - → different dopings of PPO and POPOP, various mix-up methods, temperatures etc..

Plastic Scintillator

- Component: Polystyrene pellets + Dopants (primary & secondary)
- > Dopants
 - Primary dopants (blue-emitting)
 PPO(2,5-biphenyloxazole) , PT(p-Teraphenyl)
 1-1.5% (by weight) concentration
 - Secondary dopants (green-emitting)
 POPOP(1,4-bis(5-Phenyloxazole-2-yl)benzene),
 bis-MSB(4-bis(2-Methylstyryl)benzene)
 0.01-0.03% (by weight) concentration
- > Production: Extrusion method extrusion is easy to make numerous type of scintillator

Plastic Scintillator – how does it work?

Die and Materials

> Die profile

> Mixture of dopants

Polystyrene: 3 kg

PPO: from 1.3 %

POPOP: from 0.03%

- This was originally for MINOS tile
- We start to produce this tile for a reference
- produce and compare the light yield with reference tile

Mechanical establishment of tile

- > Produce polystyrene bar without PPO for mechanical establishment
- > TiO₂ was coextruded to make reflector for test.
- \triangleright The first product had big groove and rough surfaces \rightarrow die and method had problems
- ➤ but soon, the excellent bars were produced → assure mechanically
- ➤ Then, 1st bacth came with PPO and POPOP.

Production of Scintillator bar

Comparision of transparency

Oxidation made the sample opaque because of production in air.

Scintillator test setup

➤ 5 reference samples and new samples with the same geometrical shape and size were used to compare the light yield

Preparation of test samples

Pulse Height (1st batch)

New sample(1st batch)

New scintillator bars (5 samples)

<ADC counts> = 225.9 ± 24.9

Reference scintillator bars(5 samples)

<ADC counts $> = 534.8 \pm 56.9$

Reference sample

Relative Light Yield of new samples shows 42.3% of reference samples

Light Yield

- 5 sample chosen
- evolve from 40%
- currently ~ 75%
- seems achievable to 100% or ??
- more R & D anyway
- but expect to get soon

Light Yield(%)

- reference tile to be 100% light yield
- PPO and POPOP
 amount ratio
 important to
 maximize light yield

Light Yield(most recent one)

Reference Sample

New Sample

Relative Light Yield of new samples shows 76.5% of reference samples' one.

Light Yield (POPOP dependence)

- Clear dependence
 in POPOP amount
- saturation effect seen

Saturation point

Position Scan

Scan along the fiber

Scan across the fiber

Summary and Plan

- First Polystyrene bar produced with PPO and POPOP
 - → The mechanical process has been established
- ➤ Light yield measued for new and reference samples
 - → the most recent sample shows ~75% light yield of the reference sample
- > To avoid oxidation, we changed the process
 - → under Nitrogen or vaccum; it works!
- ➤ If we achieve a good light yield, then we will change die to produce "thin" scintillator for Tile/W calorimeter
 - \rightarrow thickness: 2~3 mm, width: 1~2 cm