Focus Point Phenomenology

"LCC2"Benctmarkstudies

Line ar Collider Cosmology Connection

University of $\mathcal{F l o r i d a}$
Andreas Birkedal
Konstantin Matchev
Cornell University
Ricfrard Gray
Dan Hertz
Laura Fields
I im Pivarski
Karl Ecklund
Chris gones
I im Alexander

Focus Point Benchmark LCC-2

Focus Point Spectrum

Production and Decay

Studies Presented at LCWS-05

$$
e^{+} e^{-} \rightarrow \chi_{2}^{0} \chi_{3}^{0}
$$

- Talks:
- Richard Gray
- frep-ex/0507008
- Andreas Birkedal
- hep-ph/0507214
- Results (500f6-1):

$$
\begin{aligned}
& m\left(\chi_{3}^{0}\right)-m\left(\chi_{1}^{0}\right)=82.3 \pm 0.2 \\
& m\left(\chi_{2}^{0}\right)-m\left(\chi_{1}^{0}\right)=58.8 \pm 0.3 \\
& m\left(\chi_{1}^{0}\right)=108.3 \pm 1.0 \\
& \frac{\varepsilon_{2} \varepsilon_{3}}{\varepsilon_{0}}=+-(13 \sigma)
\end{aligned}
$$

Studies Presented at LCWS-05

$$
e^{+} e^{-} \rightarrow \chi_{2}^{0} \chi_{3}^{0} \quad \bullet \text { Talks: }
$$

Mode du jour: $\quad e^{+} e^{-} \rightarrow \chi_{1}^{+} \chi_{1}^{-}$

But:

- mucf larger cross section
- Lepton sign tags chargino (maybe usefullater)

Physics:

Kinematic distributions $d \Gamma / d \mathcal{M}, d \Gamma / d \mathcal{E}$
1
$\frac{i g}{2}\left[O_{11}^{L}\left(1-\gamma_{5}\right)+O_{11}^{R}\left(1+\gamma_{5}\right)\right]$
1

$$
\mathcal{M}_{1}, \mathcal{M}_{2}, \mu, \tan \beta
$$

For future study:
If the $\chi+$ - is polarize $d, d \Gamma / d \cos \theta^{*}$ could be interesting. (Ulse lepton tag to se parate χ^{+}, χ_{-}^{-}, measure $d \Gamma / d \mathcal{E}$.)

Kinematics of the hadronic system

For given \mathfrak{M}, just 2-body decay:

$$
\begin{gathered}
\chi_{1}^{+} \rightarrow W^{*} \chi_{1}^{0} \\
m_{+} M m_{0} \\
E^{*}=\frac{M^{2}+m_{+}^{2}-m_{0}^{2}}{2 m_{+}} \\
P^{*}=\sqrt{E^{* 2}-M^{2}}
\end{gathered}
$$

$d \Gamma / d M$

Andreas Birkedal calculated:

$$
\frac{d \Gamma}{d M} \sim \frac{M P^{*}}{m_{+}^{2}\left(M^{2}-m_{W}^{2}\right)^{2}} \times\left[m_{0}^{4}+m_{+}^{4}+M^{2} m_{+}^{2}-2 M^{4}+m_{0}^{2}\left(M^{2}-2 m_{+}^{2}\right)-6 \zeta M^{2} m_{0} m_{+}\right]
$$

Note: ζ is asymmetry in vector \&axial-vector couplings at $\chi^{+} \mathcal{W}^{*+} \chi^{0}$ vertex:

$$
\zeta \equiv \frac{v_{+}^{2}-a_{+}^{2}}{v_{+}^{2}+a_{+}^{2}}
$$

- Dependence:
- Strong: $m_{+} m_{0}$
- Medium: ζ
- Weak: $m_{+}+m_{0}$

Fit yields $m_{+}-m_{0}$ and ζ ...and they are strongly (+) correlated

Example: toy expts fitting to $d \Gamma / d M$

Generate ~ 500 toy expts, fit to formula.

- Thus for a given $\mathfrak{M}, d \Gamma / d \in$ measures the angular distribution $d \Gamma / \cos \theta^{*}$.
- This distribution depends on $m+m 0, \ldots$ as well as $R_{+} L_{+}$ couplings and degree of $\chi+$ polarization...potentially interesting physics in there.
- But for now, we finesse the $\mathcal{R}_{+^{\prime}} \mathscr{L}_{+}$couplings issue...

$d \Gamma / d E$

If $d \Gamma / \cos \theta^{*}$ is symmetric, then $\left\langle\cos \theta^{*}>=0\right.$.

- We can ensure symmetry of $d \Gamma / \cos \theta^{*}$ by ignoring opposite-side-lepton sign .. so we do not distinguis $\sqrt{ } \chi+, \chi$ -
- Alternative $\left(y, d \Gamma / \cos \theta^{*}\right.$ may be flat (eg if $\chi+$ is unpo(arized).
$\mathcal{A s s u m i n g}\left\langle\cos \theta^{*}\right\rangle=0$, we find:

$$
\langle E\rangle=\langle\gamma\rangle E^{*}=a+b M^{2}\left\{\begin{array}{l}
a=\frac{\sqrt{s}}{4}\left(1-\left(\frac{m_{0}}{m_{+}}\right)^{2}\right) \\
b=\frac{\sqrt{s}}{4 m_{+}^{2}}
\end{array}\right\} \begin{aligned}
& \text { Mainly } \\
& \text { sensitive } \\
& \text { to the ratio } \\
& m_{+} / m_{0}
\end{aligned}
$$

$\mathcal{N o t e}:$ in ISAJET $d \Gamma / \cos \theta^{*}=$ flat.

Simultaneous fit for $d \Gamma / d M$ \& $d \Gamma / d E$

m_{0}

Simulation Details

$\mathcal{L u m i}=500 \mathrm{fb}^{-1}$:

$$
\begin{aligned}
& 250 \mathrm{fb}^{-1} \mathrm{e}-\mathrm{pol}=+95 \%, \\
& 250 \mathrm{fb}^{-1} \mathrm{e}-\mathrm{pol}=-95 \%
\end{aligned} \quad \text { Note: "95\%"means } \quad \frac{R-L}{R+L}=0.90
$$

Analysis (to be described):

$$
\begin{aligned}
& \text { reconstruction eff }=36 \% \\
& \mathcal{W}^{*} \text { branching ratios }=15 \%
\end{aligned}
$$

Signalyield $=(500 \mathrm{fb}-1)\binom{940 \mathrm{fb}}{120 \mathrm{fb}}(0.36 \times 0.15)=\begin{array}{ll}12000 \mathrm{evts} \\ 1500 \mathrm{evts}\end{array} \mathrm{e}_{\mathrm{L}}$
$\mathcal{B a c k g r o u n d s}: \mathcal{W} \mathcal{W}, \mathcal{Z} \mathcal{Z}, t t+$ generic $\left(1 a b^{-1}\right.$ from \mathcal{T} im $\mathcal{B a r k l o w) ~}$

Signal Selection

Background Suppression

Signal and Backgrounds

Signal and Backgrounds

Analys is "A"

$$
\frac{\sigma_{E}}{E} \sim \frac{0.15}{\sqrt{E}}
$$

Analys is " \mathcal{B} "

$\frac{\sigma_{E}}{E} \sim \frac{0.8}{\sqrt{E}}$

Yields, $\sigma_{\iota} \sigma_{R}$

Counting events in $\mathcal{F A S} \mathcal{T M C}$ with Analysis "B"

Signal $\left(\chi_{1}^{+} \chi_{1}^{-} \rightarrow e^{ \pm} j j(g)\right)$	12421	1592
SUSY backgrounds (including $\chi_{1}^{+} \chi_{1}^{-}$to other modes)	1751	480
Standard Model backgrounds	3170	1209
Cross-section measurement	$940 \pm 10 \mathrm{fb}$	$119 \pm 4.3 \mathrm{fb}$

$$
\begin{aligned}
& \sim 1 \% \text { on totalcross section (or } \sigma_{L} \text {); } \\
& \sim 4 \% \text { on } \sigma_{R} . \\
& \quad A_{L R}=\frac{\sigma_{L}-\sigma_{R}}{\sigma_{L}+\sigma_{R}}=0.78 \pm 0.01
\end{aligned}
$$

Simultaneous fit for $d \Gamma / d M$ \& $d \Gamma / d E$

Explore further with toy MC.- flexible, fast

- 250 toy experiments
-generate 10 Kevents in each expt:
$d \Gamma / d \mathfrak{M}$ - Andreas 'formula; $\zeta=0.86$ $d \Gamma / d E$ flat
- \mathcal{E}, \mathcal{M} smeared by $\sigma_{\mathcal{E}}=30 \% / \sqrt{E} \cdots$ optimal $P \mathcal{F A}$
- Restrict fit to $\mathfrak{M}>25 \mathrm{GeV}$:

IS $\mathcal{A J E T} / \mathcal{F A S T M C}$:

- Low mass range is sculpted
- not understood yet.
- main impact on fit is reduced statistics (64\%)
- Fit includes resolution sme aring

Sensitive - get it right!!
brem/beam-straflung for now.

- Sensitive - get it right!!
- No background for now.
Dual Fit to M and <E>

FA

Simultaneous fit for $d \Gamma / d M$ \& $d \Gamma / d E$

250 toy experiments: $10 \mathcal{K e v t s}, \sigma_{\mathcal{E}}=30 \% / \sqrt{E}$

$m_{+}=158.5 \pm 0.8$
(generated value: 159.4)
$m_{0}=107.1 \pm 0.6$
(generated value: 107.7)

Simultaneous fit for $d \Gamma / d M$ \& $d \Gamma / d E$

250 toy experiments: $10 \mathcal{K e v t s}, \sigma_{\mathcal{E}}=30 \% / \sqrt{E}$

Mass Sensitivity vs Detector Resolution

Dependence on "jet" energy resolution is somewhat mild...

CAVEATS!

1. $\mathfrak{N o ~} 6 \mathrm{~kg}$ included. $\mathcal{B K g s}$ will raise the floor and the slope.
2. Toy Monte Carlo...
3. Prefiminary!

Res	mchg	mlsp	mdiff	zeta
0%	+-0.66	+-0.56	+-0.19	+-0.020
30%	+-0.8	+-0.6	+-0.25	+-0.025
60%	+-1.3	+-0.9	+-0.47	+-0.039

Cosmological Connections

