Focus Point Phenomenology

"LCC2" Benchmark studies

Linear Collider Cosmology Connection

University of Florida Andreas Birkedal Konstantin Matchev

Cornell University Richard Gray Dan Hertz Laura Fields Jim Pivarski Karl Ecklund Chris Jones Jim Alexander

Focus Point Benchmark LCC-2

Focus Point Spectrum

Spectrum computed by ISAJET

Studies Presented at LCWS-05

- Talks:
 - Richard Gray
 - hep-ex/0507008
 - Andreas Birkedal
 - hep-ph/0507214

$$m(\chi_3^0) - m(\chi_1^0) = 82.3 \pm 0.2$$
$$m(\chi_2^0) - m(\chi_1^0) = 58.8 \pm 0.3$$
$$m(\chi_1^0) = 108.3 \pm 1.0$$
$$\frac{\varepsilon_2 \varepsilon_3}{\varepsilon_0} = + - (13\sigma)$$

Studies Presented at LCWS-05

- Talks:
 - Richard Gray
 - hep-ex/0507008
 - Andreas Birkedal
 - hep-ph/0507214

• Results (500fb⁻¹):

$$m(\chi_3^0) - m(\chi_1^0) = 82.3 \pm 0.2$$

 $m(\chi_2^0) - m(\chi_1^0) = 58.8 \pm 0.3$
 $m(\chi_1^0) = 108.3 \pm 1.0$
 $\frac{\epsilon_2 \epsilon_3}{\epsilon_1} = + -$ (13 σ)

Mode du jour: $e^+e^- \rightarrow \chi_1^+\chi_1^-$

Physics: The $\chi_1^+\chi_1^-(Z^0,\gamma)$ vertex

For future study: Are the χ +- polarized? Can we measure the polarization? Can we find an estimator of the χ +- axis (cos θ)... \rightarrow d σ /d cos θ ?

Physics: The $\chi_1^+\chi_1^0W^{*+}$ vertex

For future study:

If the χ +- is polarized, d Γ /d cos θ^* could be interesting. (Use lepton tag to separate χ + , χ - , measure d Γ /dE.)

Kinematics of the hadronic system

$d\Gamma/dM$

Andreas Birkedal calculated:

$$\frac{d\Gamma}{dM} \sim \frac{MP^*}{m_+^2(M^2 - m_W^2)^2} \times \left[m_0^4 + m_+^4 + M^2 m_+^2 - 2M^4 + m_0^2(M^2 - 2m_+^2) - 6\zeta M^2 m_0 m_+\right]$$

Note: ζ is asymmetry in vector & axial-vector couplings at $\chi^+ W^{*+} \chi^0$ vertex:

$$\zeta \equiv \frac{v_+^2 - a_+^2}{v_+^2 + a_+^2}$$

- Dependence:
 - Strong: m₊- m₀
 - Medium: ζ
 - Weak: m₊+ m₀

Fit yields m_+ - m_0 and ζ and they are strongly (+) correlated

Example: toy expts fitting to d\Gamma/dM

Generate ~500 toy expts, fit to formula.

• Thus for a given M, d Γ /dE measures the angular distribution d Γ / cos θ^* .

• This distribution depends on m+, m0,... as well as R₊, L₊ couplings and degree of χ + polarization... potentially interesting physics in there.

• But for *now*, we finesse the R₊, L₊ couplings issue...

$d\Gamma/dE$

If $d\Gamma/\cos\theta^*$ is symmetric, then $\langle\cos\theta^*\rangle = 0$.

- We can ensure symmetry of d Γ /cos θ^* by ignoring opposite-side-lepton sign -- so we do not distinguish χ_{+} , χ_{-}
- Alternatively, $d\Gamma/cos\theta^*$ may be flat (eg if $\chi \text{+}$ is unpolarized).

Assuming $\langle \cos \theta^* \rangle = 0$, we find:

$$\langle E \rangle = \langle \gamma \rangle E^* = a + bM^2$$

$$\left\{ \begin{array}{c} a = \frac{\sqrt{s}}{4} \left(1 - \left(\frac{m_0}{m_+} \right)^2 \right) \\ b = \frac{\sqrt{s}}{4m_+^2} \end{array} \right\}$$
Mainly sensitive to the ratio m_+/m_0

Note: in ISAJET d Γ /cos θ^* = flat.

Simultaneous fit for $d\Gamma/dM \& d\Gamma/dE$

 m_0

Simulation Details

Backgrounds: WW, ZZ, tt + generic (1 ab⁻¹ from Tim Barklow)

Background Suppression

Signal and Backgrounds

Signal and Backgrounds

Yields, σ_L, σ_R

Counting events in FASTMC with Analysis "B"

	left-pol.	right-pol.
Signal $(\chi_1^+\chi_1^- \to e^{\pm}jj(g))$	12421	1592
SUSY backgrounds (including $\chi_1^+\chi_1^-$ to other modes)	1751	480
Standard Model backgrounds	3170	1209
Cross-section measurement	$940~{\pm}~10~{\rm fb}$	$119\pm4.3~{\rm fb}$

~1% on total cross section (or
$$\sigma_L$$
);
~4% on σ_R .
 $\sigma_L - \sigma_R$

$$A_{LR} = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} = 0.78 \pm 0.01$$

Simultaneous fit for $d\Gamma/dM$ & $d\Gamma/dE$

Simultaneous fit for $d\Gamma/dM \& d\Gamma/dE$

250 toy experiments: 10K evts, $\sigma_{\rm F}$ =30%/ \int E

$m_+ = 158.5 \pm 0.8$ $m_0 = 107.1 \pm 0.6$

(generated value: 159.4)

(generated value: 107.7)

Simultaneous fit for $d\Gamma/dM \& d\Gamma/dE$

250 toy experiments: 10K evts, $\sigma_{\rm E}$ =30%/JE

Mass Sensitivity vs Detector Resolution

Dependence on "jet" energy resolution is somewhat mild...

CAVEATS!

 No bkg included.
 Bkgs will raise the floor and the slope.

- 2. Toy Monte Carlo...
- 3. Preliminary!

 $X \qquad (\sigma_E/E = X \% / \sqrt{E})$

Res	mchg	mlsp	mdiff	zeta	
0%	+-0.66	+-0.56	+- 0.19	+-0.020	
30%	+- 0.8	+- 0.6	+- 0.25	+-0.025	
60%	+- 1.3	+- 0.9	+- 0.47	+-0.039	

Cosmological Connections

