A Model-Independent Signature for WIMPs at the ILC

Maxim Perelstein (Cornell)

in collaboration with Andreas Birkedal (U. of Florida) Konstantin Matchev (U. of Florida)

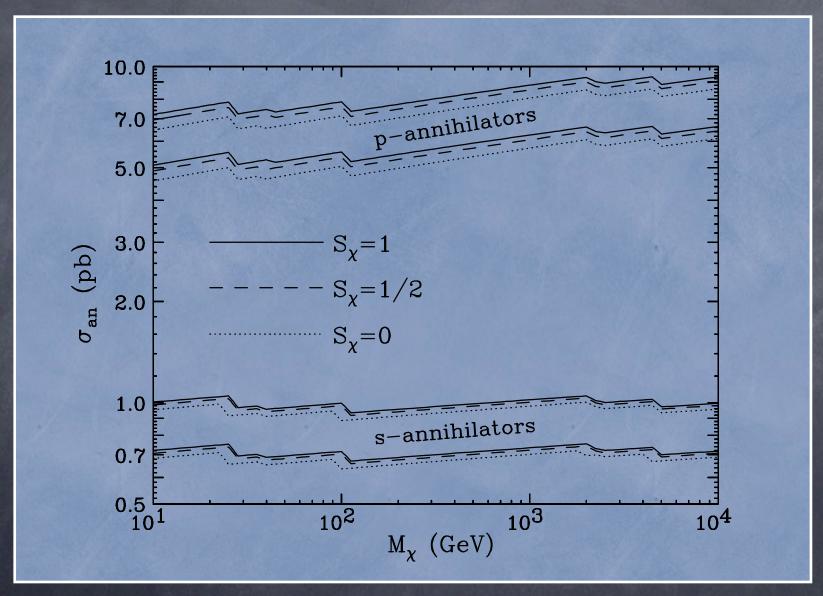
PRD70:077701, 2004 [arxiv:hep-ph/0403004]

Dark Matter Puzzle:

- About 25% of the energy in the universe is dark, non-relativistic matter
- Non-particle explanations unlikely
- has to be stable (or at least T=10 bln. years)
- cannot be a Standard Model neutrino (free streaming)
- Have to invent (at least one) new particle

WIMP: a Perfect Fit

- a new interaction of similar strength/range)
- $_{\odot}$ When T<M(χ), $n_{\chi} \propto \exp(-M/T)$ (Boltzmann suppression) and χ 's decouple
- $m{\circ}$ Energy density of χ 's today: $ho_{\chi} pprox rac{T_0^3}{M_{
 m pl}\sigma} \sim
 ho_c$


Assumptions:

- Assume generic mass spectrum (no resonances, no coannihilations)
- At the time of χ decoupling, the only important reactions are $\chi\chi\leftrightarrow X_i\bar{X}_j$, where X_i is SM
- For non-relativistic WIMPs, can be expanded as:

$$\sigma_i v = \sigma_i^{(0)} + \sigma_i^{(1)} v^2 + \dots$$

- Dominated by either s-wave or p-wave
- $\sigma_{
 m an} = \sum_i \sigma_i^{J_0}$

Ω_{dm} determines σ_{an}

 2σ constraint using $\Omega_{dm}h^2=0.112\pm0.009$ (WMAP)

From Cosmology to Colliders

- © Cosmology provides a precise, model-independent measurement of $\sigma_{\rm an}$
- we use this information to predict \(\chi\) production rate at a collider!
- Step 1: Detailed Balancing (DB)

$$\frac{\sigma(\chi\chi \to e^+e^-)}{\sigma(e^+e^- \to \chi\chi)} = 2\frac{v_e^2(2S_e + 1)^2}{v_\chi^2(2S_\chi + 1)^2}$$

ullet Define annihilation fraction: $\kappa_e = \sigma_{e^+e^-}^{J_0}/\sigma_{
m an}$

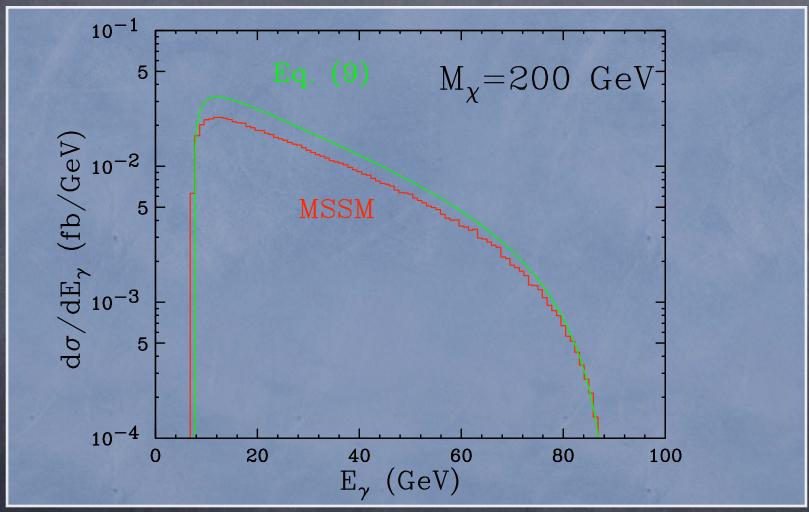
Tagging and Factorization

Obtain a prediction:

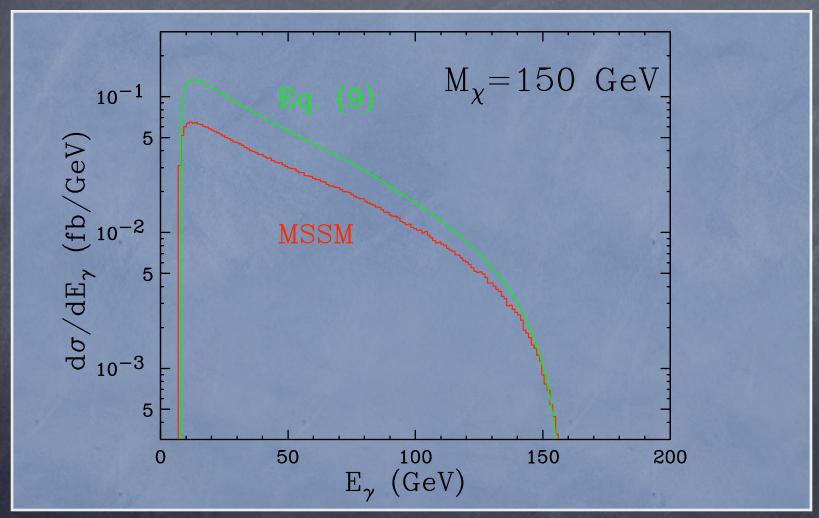
$$\sigma(e^{+}e^{-} \to \chi\chi) = \frac{2^{2(J_0+1)}}{(2S_{\chi}+1)^2} \kappa_i \sigma_{\rm an} \left(1 - \frac{4M_{\chi}^2}{s}\right)^{1/2+J_0}$$

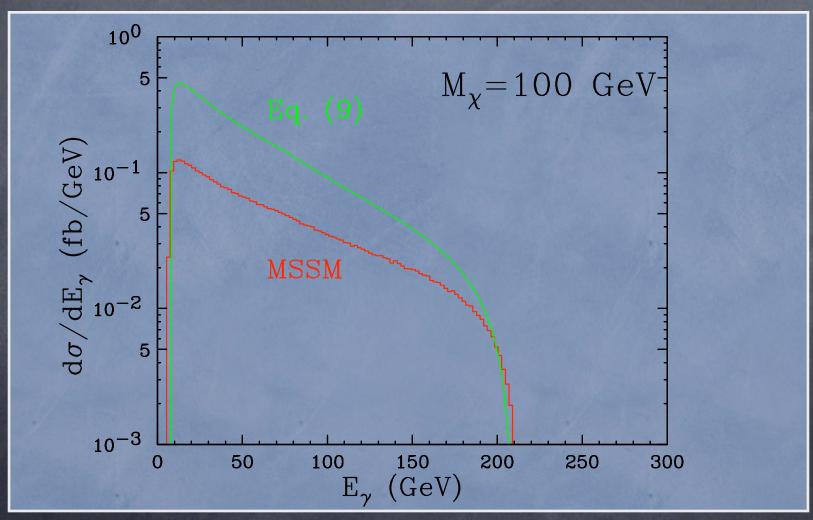
- This is unobservable (like $e^+e^- \rightarrow \nu\bar{\nu}$)
- © Consider instead $e^+e^- o \chi\chi + \gamma$
- Step 2: Use soft/collinear factorization:

$$\frac{d\sigma(e^+e^- \to 2\chi + \gamma)}{dx \, d\cos\theta} \approx \mathcal{F}(x, \cos\theta) \hat{\sigma}(e^+e^- \to 2\chi)$$


$$\mathcal{F}(x,\cos\theta) = \frac{\alpha}{\pi} \frac{1 + (1-x)^2}{x} \frac{1}{\sin^2\theta}, \qquad x = 2E_{\gamma}/\sqrt{s}$$

Potential Problems:

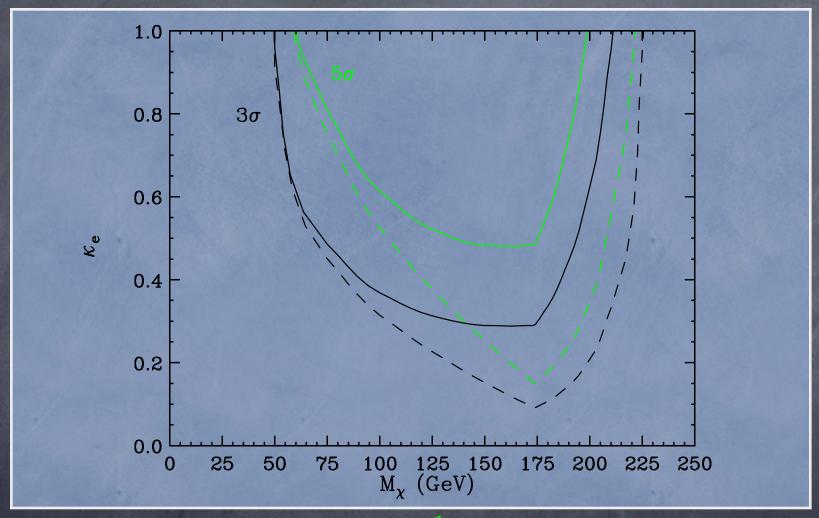

- DB+CF results in a model-independent prediction for an observable quantity
- Rates are
 No lower bound
- \odot However many models predict $\kappa_e \sim 0.2-0.3$
- Only works for NR WIMPs close to threshold
- Collinear photons are unobservable: cuts on and sin fare necessary to eliminate backgrounds (e.g. Bhabha)
- © Compare the rates (integrated with realistic cuts) obtained by an exact calculation in a chosen model (MSSM) to the DB+CF results with matching parameters (κ_e , M_χ , S_χ , J_0)


 $p_T^{\gamma} > 7.5 \text{ GeV}, \sin \theta > 0.1$

 $p_T^{\gamma} > 7.5 \text{ GeV}, \sin \theta > 0.1$

 $p_T^{\gamma} > 7.5 \text{ GeV}, \sin \theta > 0.1$

 $p_T^{\gamma} > 7.5 \text{ GeV}, \sin \theta > 0.1$


Lessons of the Comparison

- © Collinear approximation works pretty well, even with an extra cut to suppress central photons!
- \odot A lower cut on E_{γ} is necessary to select events with non-relativistic WIMPs

Experimental Strategy for a Model-Independent WIMP Search at the ILC

- Look for photon+missing energy events
- Impose (7) cut to eliminate fakes (mainly Bhabha)
- ullet Impose E_{γ}^{\min} cut to ensure non-relativistic WIMPs
- © Compute and subtract the irreducible background (mainly $e^+e^- \to \nu \bar{\nu} \gamma$)
- Look for deviations from zero!

The Reach of a 500 GeV LC

Dash – stat. only ($\mathcal{L} = 500 \text{ fb}^{-1}$), Solid – stat. + 0.3% syst.

Cuts: $\sin \theta > 0.1$, $p_T^{\gamma} > 7.5 \text{ GeV}$, $x_{\gamma} \in [1 - 8M_{\chi}^2/s, 1 - 4M_{\chi}^2/s]$

Comments

Beam polarization reduces the background:

$$\sigma(e_L^- e_R^+ \to \nu \bar{\nu} \gamma) \gg \sigma(e_R^- e_L^+ \to \nu \bar{\nu} \gamma)$$

Example: "P-symmetric WIMPs"

$$\sigma(e_L^- e_R^+ \to \chi \chi) = \sigma(e_R^- e_L^+ \to \chi \chi)$$

- Sig/Back improved by a factor of 5 for $P_- = 0.8$, $P_+ = 0$, and a factor of 18.5 for $P_- = 0.8$, $P_+ = 0.6$
- The approach can be applied to pp collisions as well, but backgrounds are much more severe (see S. Su's talk)

Conclusions

- Cosmology provides information on the NR limit of WIMP total annihilation cross section (with mild assumptions generic mass spectrum)
- Using detailed balancing and collinear factorization, this leads to a 1-parameter prediction of photon+missing E rates due to WIMP pair-production
- This prediction is independent of microscopic physics (SUSY, UED, LH, ...)
- Predicted rates are challenging but may be observable at the ILC

Summary: WMAP -> ILC