2005 International Linear Collider Physics and Detector Workshop and Second ILC Accelerator Workshop Snowmass, Colorado, August 14-27, 2005

DM with (very) heavy SUSY scalars at ILC

Orsay – Paris VI-VII Collaboration

August 2005

F. Richard

DM with heavy sleptons

F. Richa

- 1st phase on co-annihilati challenging analyses hep evaluations of the forwarc veto eff.) presented at LC
- 2nd phase assumes heavy by flavor constraints: Foc
- 6 SUSY scenarios are de on experimental indication

Goals of this Study

- Working points chosen to illustrate the ILC potential
- Can one maintain the 2% on DM even if the full gaugino spectrum is not observed (µ or M2 not directly accessible) ?
- How sensitive is ILC to a heavy sl³
- Theoretical inputs: based on 3 'Fr Susygen, Suspect, Micromegas
- Experimental inputs: σ(χχ')<< WW, Wev,χ⁺χ⁻ -> χχ' selection through Z->bbar, needed

-> ~10⁶ $\chi^+\chi^-$ requires ultimate prepol ?) and on luminosity and low

August 2005

F. Richard

Theoretical Motivations

Accommodate la

- Focus Point within mSU
 large m₀ ~10 TeV
- gaugino spectrum parti
 polarization allows to me ~1 TeV for gauginos,
 - ~ few TeV for sneutrinos!
- Split SUSY N. Arkani-Hamed et al. m₀=10⁶ TeV mh=160 GeV
- h-annihilation mLSP~mh/2 critical on SUSY parameters 0.1 GeV-> 10% on DM August 2005

Experimental motivation

 EGRET excess of γ interp -> all gaugino accessible, HA accessible -> $tan\beta = 5$ LEP h(98)Z+H(114)Z 'see -> 2nd chargino not acces Degenerate scenario mχ⁺ ISR technique valid in sev LSP pure wino or Higgsin Monday by Z. Zhang)

Extraction of SUSY parameters

gaugino masses chargino σL,R + AFB (mixing) s dependence (sneutrino mass) Higgs sector (tanβ)

M1, M2, μ, m0, tanβ e.g. EGRET with all gaugino+Higgses -> What about other cases?

Focus

- M2 large, 2nd chargino missing, only hZ
- $\phi_{L,R}$ from σ_R and charge asymmetry
- M1 from χ_1 , μ from χ_2
- $\phi_{L,R}$ + μ -> M2 to 5% and tan β >3
- $\phi_{L,R} + \sigma_L -> m_0 > 3 \text{ TeV} 90\% \text{ CL}$
- DM known to 2%
- -> Small impact of M2 and tanβ errors

h-annihilation

- 2nd chargino known, only h
- AFB~ $cos\phi_L$ – $cos\phi_R$ + chargino masses:

$$\tan\beta = \sqrt{\frac{4m_W^2 - (m_{\tilde{\chi}_2^{\pm}}^2 - m_{\tilde{\chi}_1^{\pm}}^2)(\cos 2\phi_L - \cos 2\phi_R)}{4m_W^2 + (m_{\tilde{\chi}_2^{\pm}}^2 - m_{\tilde{\chi}_1^{\pm}}^2)(\cos 2\phi_L - \cos 2\phi_R)}}$$

 $\tan\beta = 5 \pm 0.8 -> DM \text{ to } 40\%$

 challenging precision requested χχ->h very sensitive to mixing parameters

 LSP mass also critical ±100 MeV 10% on DM

Detailed results (preliminary!)

SUSY	LSP	M2	M1	μ	tanβ	sneutrino	Features	Overall
Param/						mass and		effect
Scenarios						bound		Ωh^2_{DM}
						TeV		(origin)
I Focus	378±0.5	724±40	407±3	427±2	10	12.5	mh=130	1%
					>2.8	>3		
II SpS1	261±0.4	560±1	281±1	340±1	5±1	10 ⁶	mh=160	1%
						>6	from SpS	
III h-ann	79.5±0.1	156±1	78±1	-400±1	5±0.8	10 ⁶	mh=163	40%
						>12	from SpS	(tanβ)
IVEGRET	64± 0.2	128±1.9	68±0.2	212±2.5	51	1.4±0.014	HA accessible	2%
					48 <tanβ<54< td=""><td>>12</td><td></td><td></td></tanβ<54<>	>12		
V LEP	59.6±0.1	117±1	60±0.1	μ=900±100	20±0.5	2±0.1	H,A,h	30%
						>12	Accessible	(μ)
VI Degen	299±1	5 TeV	5 TeV	300±1	20	Pure	mχ+–mχ°	1.2%
		>4 TeV	< ∞		No limit	Higgsino	to ±2%	
		(β=π/2)	(β=π/2)					
		<7.5 TeV	>2.2 TeV					
		(β=π/4)	(β=π/4)					

Sensitivity of the chargino channel to the sneutrino exchange

- To distinguish high sensitivity
- LHC can only sneutrinos
- DM often requ
 -> Sneutrino ex
 component

• This component can be seen through energy dependence and/or polarization effects

Mass limits on sneutrinos

August 2005

F. Richard

Conclusions

- Ultimate (P, *L*, background) ILC accuracy needed to cover the various scenarios presented
- $\chi^+\chi^-$ give indirect access to large masses
- -> ~10 TeV sneutrinos
- -> μ , $M_2 \sim 1 \text{ TeV}$
- DM h-annihilation very sensitive to LSP mass and to mixing parameters (μ, tanβ)
- Detector properties crucial: p-flow, b-tagging
- Good hope to control, in most cases, the SUSY parameters at the right precision