Branon Phenomenology: Search for Extra Dimensions Dark Matter

José A. R. Cembranos

Department of Physics and Astronomy University of California, Irvine Irvine, CA 92697-4575

Work done in collaboration with Antonio Dobado and Antonio L. Maroto

CONTENTS

1.- Brane Models

3.- Branons

3.a. Effective Action

Dark Matter

3.b. Colliders

3.c. Cosmology and Astrophysics

3.d. Radiative Corrections

BRANE WORLDS (BWs)

The main idea is that our universe is restricted to a 3-brane embedded in a higher *D* dimensional space, with $D = 4+\delta$, being the δ extra dimensions compactified.

In this picture the Standard Model (SM) particles are confined to the 3-brane but gravitons can propagate along the whole bulk space.

Arkani-Hamed et al., PLB 429, 263 (1998)

Arkani-Hamed et al., PRD 59, 086004 (1999)

BRANE WORLD SIGNALS

1.- Metric effects $(f >> M_D)$: **New particles:** Kaluza-Klein graviton tower **Newton law deviations Black hole production 2.-** Brane effects $(f \ll M_D)$: **New particles:** Cosmological and Astrophysical Interest: Dark Matter candidate

Sundrum, PRD 59, 085009 (1999)

Bando et al., PRL 83, 3601 (1999)

Dobado and Maroto, NPB 592, 203 (2001)

Cembranos et al., PRL 90, 241301 (2003)

BRANON EFFECTIVE ACTION

The interaction of the branons (π^{α}) with the SM particles is given by:

As in the case of the gravitons, the branons couple to the SM through:

$$T_{SM}^{\mu\nu} = -\left(\tilde{g}^{\mu\nu}\mathcal{L}_{SM} + 2\frac{\delta\mathcal{L}_{SM}}{\delta\tilde{g}_{\mu\nu}}\right)\Big|_{\tilde{g}_{\mu\nu}=\eta_{\mu\nu}}$$

lo and Maroto, NPB 592, 203 (2001) Cembranos *et al.*, PRD 65, 026005 (2002)
nelli and Strumia, NPB 596, 125 (2001) Alcaraz *et al.*, PRD 67, 075010 (2003)

Snowmass 2005

Doba

Crem

PARTICLE COLLIDERS

1.- Electroweak boson width modifications.

2.- Direct searches in e⁺e⁻ colliders.

3.- Direct searches in hadronic colliders. 2.a. Invisible Z width.
2.b. W decay. Alcaraz et al., PRD 67, 075010 (2003)

2.a. Single photon channel.
2.b. Single Z channel.
2.c. Prospects for future LC.

Alcaraz et al., PRD 67, 075010 (2003)

3.a. Single photon channel.
3.b. Mono jet channel.
3.c. Prospects for future hadronic
colliders. Cembranos *et al.*, PRD 70, 096001 (2004)

Snowmass 2005

SINGLE γ AND Z CHANNELS

The most important signal in electronpositron colliders is associated with the single photon channel (or single Z channel) plus missing energy.

or Z production

Alcaraz et al., PRD 67, 075010 (2003)

$$\frac{d\sigma_A}{dxd\cos\theta} = \frac{|h|^2}{4\pi} \frac{s(c_V^2 + c_A^2)(s(1-x) - 4M^2)^2N}{61440f^8\pi^2} \sqrt{1 - \frac{4M^2}{s(1-x)}} \left[x(3-3x+2x^2) - x^3\sin^2\theta + \frac{2(1-x)(1+(1-x)^2)}{x\sin^2\theta} \right]$$

Snowmass 2005

L3 DATA ANALYSIS

L3 is a collaboration with more than 50 institutions from all the world.

L3 was a detector working with the produced particles in the electron-positron collisions in the LEP ring (CERN).

L3, PLB 597, 145 (2004)

CONSTRAINTS AND PROSPECTS

Main analyses related to real branon production in collider experiments. All the results are performed at the 95% c.l. (N=1).

Experiment	$\sqrt{s}(\text{TeV})$	$\mathcal{L}(\mathrm{pb}^{-1})$	$f_0(\text{GeV})$	$M_0(\text{GeV})$	
HERA ¹	0.3	110	16	152	
Tevatron-I $^{\rm 1}$	1.8	78	157	822	
Tevatron-I 2	1.8	87	148	872	
$LEP-II^2$	0.2	600	180	103	
Tevatron-II $^{\rm 1}$	2.0	10^{3}	256	902	
Tevatron-II 2	2.0	10^{3}	240	952	
ILC 2	0.5	2×10^5	400	250	
LHC ¹	14	10^{5}	1075	6481	
$\rm LHC^{2}$	14	10^{5}	797	6781	
CLIC^2	5	10^{6}	2640	2500	

Snowmass 2005

BRANONS IN COSMOLOGY

Branons are generically stable, weakly interactive and massive.

Weakly-Interactive Massive Particles: WIMPs.

1.- Branons: Dark Matter (DM) candidates.

Cembranos et al., PRL 90, 241301 (2003)

Cembranos et al., PRL 90, 241301 (2003)

2.- Searches of branons as Dark Matter.

2.a.- Direct detection experiments.

2.b.- Indirect detection experiments. AMS Note, 2003-08-02 (2003)

3.- Cosmological and astrophysical restrictions.

Kugo and Yoshioka, NPB 594, 301 (2001) C

Cembranos et al., PRD 68, 103505 (2003)

Snowmass 2005

MAIN RESULTS

Cosmological and astrophysical constraints.

DIRECT SEARCHES

WIMPs elastically scatter off nuclei

nuclear recoils Measure recoil energy spectrum

Direct interaction of the DM halo with the detector. Typical nucleus recoil energy: $E_R \sim 1-100$ keV.

The rate of the *WIMP* interactions depends on the local DM density and relative *WIMP* velocity.

 $v/c \approx 10^{-3}$

DIRECT RESULTS

The appropriate quantity to compare with the experimental results is not the elastic branon-nucleus cross section σ , but the differential cross section per nucleon at zero momentum transfer: σ_n .

INDIRECT SEARCHES

WIMPs annihilate
1.- In the center of the Sun, and the Earth core: high energy neutrinos.
Antares, Amanda, IceCube, ...
2.- In the halo: γ, e+, p-, D ...

2.a.- Halo profiles from simulations and rotation curves.

2.b.- Green's functions from propagation model.

2.c.- Average cross section from the effective theory.

AMS PROSPECTS

Cosmic rays : p, D, He, C, ...,e+, e-, γ, ...

It will collect ~10¹⁰ CRs in near-earth orbit from few GeV to few TeV.

AMS Note, 2003-08-02 (2003)

RADIATIVE CORRECTIONS

Modifications in the standard model phenomenology due to branon radiative corrections:

RADIATIVE RESULTS

The branon radiative effects (at 95% C.L.) on the Standard Model phenomenology can be observed in the following general plot (N = 1):

WMAP vs. BAGS

Flexible Brane Worlds can explain the non-baryonic dark matter abundance observed by WMAP and improve the present fits on the muon anomalous magnetic moment measured in the BAGS in a natural region of the parameter space.

J.A.R. Cembranos

Snowmass 2005

CONCLUSIONS

1.- The branon signals constitute the first observational evidence for some extra dimensional models: Flexible Brane Worlds ($f \ll M_D$).

2.- Their phenomenology can be determined in a model independent way in terms of the brane tension scale f, their number N and their masses M.

3.- This phenomenology is very rich and could be related to a great variety of experimental signals beyond the SM:

- 3.a. Scattering experiments: single γ , monoJet production, Bhabha scattering ...
- 3.b. Cosmological observations: dark matter candidate ...
- 3.c. Astrophysical Analysis: direct searches, indirect searches ...
- 3.d. Electroweak precision observables.
- 3.e. Muon anomalous magnetic moment.