Survey of top properties in new physics models

Frank Petriello
University of Wisconsin at Madison

Snowmass top/QCD working group
August 2005

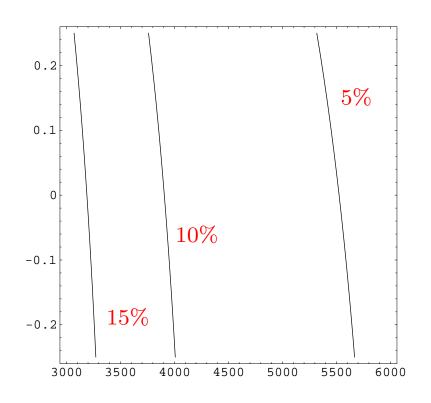
Motivation

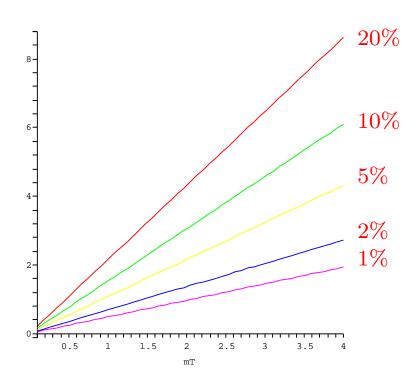
- Top quark an interesting particle to study
 - Large mass suggests connection to EW symmetry breaking
 - Last remaining discoverd SM particle not studied
- Large sample sizes at both colliders:
 - LHC: $10^7 t\bar{t}$ pairs in $10 \, \mathrm{fb}^{-1}$
 - ILC: $5 \times 10^5 \ t\bar{t}$ pairs in $100 \ \mathrm{fb}^{-1}$
- strong experimental program, much work to calculate SM predictions
- Most new physics models must shift top properties because of its large mass

Scope of project: I

- Several general studies of anomalous top couplings, although gaps exist (see U. Baur's 8/17 talk)
- Literature on new physics predictions sparse and disjointed
- Start joint work with BSM group to calculate and catalog predictions
- → compare with LHC, ILC potential
- Work begun with:
 - Kaustubh Agashe
 - Carola Berger
 - Shrihari Gopalakrishna
 - Ben Lillie
 - Maxim Perelstein

Scope of project: II


Begin survey with:


- SUSY, loop effects
- Randall-Sundrum ED with matter in bulk
- Top see-saw
- Two-Higgs doublets
- Little Higgs: Littlest Higgs, simple group LH, T-parity LH

Study:

- width
- Wtb chirality
- W longitudinal, transverse fractions
- ullet $Z\bar{t}t, \gamma\bar{t}t$

Results: Ztt shifts

- RS matter in bulk \Rightarrow mostly t_R shift
- Littlest Higgs \Rightarrow only t_L shift
- ▶ LHC (ILC) can measure vector coupling to 50% (1%), axial coupling to 8% (1%)