Experimental top threshold scan

Stewart T. Boogert University College London

Introduction

- Precision top mass essential Standard model measurement
 - Test of QCD and variants at the top threshold
 - Constrain standard model (in conjunction with Higgs measurement)
- Top mass measurement requirement of 50 MeV
 - ~3 parts in 10⁴
 - High precision possible due to beam line constraint
- Linear collider \neq LEP
 - Linac energy spread
 - Beamstrahlung
 - Single measurement of bunches before collision
- Other considerations
 - Effect of initial state radiation
 - Required theoretical precision
 - Bhabha scattering at wide angle
 - Theoretical precision of differential distributions

Experimental top threshold

dL

 $\frac{d}{d\sqrt{s}}$

- Precision threshold measurement require
 - Determination of luminosity spectrum
 - Bhabha acolinearity
 - Average centre of mass energy $\langle \sqrt{s} \rangle$
 - Energy spectrometer (WG4)
 - Radiative returns
 - Calculation of Initial state radiation
 - Theoretical precision
- Effect on top cross section

$$\sigma'(\sqrt{s}) = \frac{1}{L_0} \int_0^1 L(x) \sigma(x\sqrt{s}) dx$$

- Effective loss in luminosity
- Systematic shift in top mass
 - Dominant systematic error?

Stewart T. Boogert (Experimental top threshold scan)

Differential quantities

- Current analysis only includes total cross section
 - Differential distributions are useful for providing additional constraint of the top mass
 - Distributions help understanding of correlation between top mass and strong coupling constant
- Effect of luminosity spectrum not so clear on these quantities
 - Full generator required
 - Differential distributions available at NNLO and can in used in conjunction with full NNLL full cross section
 - Work started (plan made) and will continue (SB+TT) after Snowmass

٠

Luminosity spectrum

- Bhabha acolinearity can be used to monitor luminosity spectrum
 - Acolinearity sensitive to momentum mismatch between beams
 - Assuming only one beam has radiated then acolinearity gives the center of mass energy of collision

$$x = \sqrt{\cot\left(\frac{\theta_e}{2}\right)\cot\left(\frac{\theta_p}{2}\right)}$$

- Extraction of luminosity spectrum
 - Insensitive to absolute energy scale
 - Difficult to extract luminosity spectrum from observed acolinearity
 - Previous analysis (Moenig) showed promise, must be extended for wider classes of beam spectra
 - Precision can be better than 10⁻⁴ due to high envisioned resolution of forward trackers

٠

Beamstrahlung spectrum (350GeV)

- Beamstrahlung main unknown
 - Integrated ILC accelerator simulations available
 - 350 GeV samples just available (G. White)
 - Generated luminosity weighted spectra for whole bunch train
 - Include in favorite Generators
 - New parameterizations
 - Evaluate changes in the accelerator down to physics analyses
 - Example fit of 350 GeV cold accelerator
 - CIRCE⊗Gaussian

	CME (500)	CME (350)
a0	0.337	0.307
a2	18.576	28.739
a3	0.419	0.319
bs (%)	0.089	0.096

Stewart T. Boogert (Experimental top threshold scan)

Post Snowmass plans

- Event generator
 - Essential for detector event simulation
 - Also can implement energy variation effects for distributions (p, A_{FB} & polarization)
 - SB + Thomas Teubner to investigate
- Luminosity spectrum and average energy
 - Must verify Bhabha acolinearity method works with realistic beam spectra
 - Design of energy spectrometer is ongoing (see AWG4) precision of >10⁻⁴ expected
 - Analysis of Radiative returns for absolute energy calibration wrt Z mass
- Theoretical uncertainties (whole QCD/top group)
 - Wide angle Bhabha scattering precision (distributions)
 - Initial state radiation
- Perform full analysis
 - Sensible scan strategy, with reasonable luminosity per point
 - Perform all analyses (top, Bhabha, radiative return)
 - Complete understanding of top threshold

Summary and conclusions

- Full top threshold analysis not complete
 - Luminosity spectrum extraction using acolinear Bhabha scatters
 - Progress made at Snowmass, coherent approach with accelerator simulators
 - Average centre of mass energy
 - Radiative returns
 - Energy spectrometer
 - Detector simulation

8/25/05

- Top pair counting experiment not expected to set a tough requirement on existing detector designs
- Requirements for Bhabha scattering and Radiative Z returns might set the requirements of the low angle tracking and EM calorimeter
- Coherent approach to detector simulation within QCD/top group (limited manpower)
- Top threshold can be used as template for all threshold studies including
 - WW threshold (Radiative returns)
 - SUSY(energy spectrometer)