ILC Workshop, Snowmass, Colorado

25 August 2005

Top Threshold Developments: Theory

Thomas Teubner

(The University *of* Liverpool)

- Towards a full understanding of EW effects in $e^+e^- \rightarrow t\bar{t}$
- Differential distributions for the threshold scan
- Threshold effects in $t\bar{t}H$ production
- $t\bar{t}$ production at NNNLO \longrightarrow Yuichiro Kiyo

Why the top threshold?

***** We want m_t with better than per mille accuracy

- \rightarrow EWSB (indirect m_H det.), SUSY parameters, low energy...GUT connection
- * Threshold scan $e^+e^- \rightarrow t\bar{t}$ the only known way to achieve $\Delta m_t < \Lambda_{\rm QCD}$
 - \rightarrow counting $bW^+\bar{b}W^-$ colour singlett states
- \star Threshold dynamics understood at NNLL (soon also N³LO)
 - \rightarrow Effective Field Theories (v,p)NRQCD

 $\sigma(e^+e^- \rightarrow t\bar{t})$ in a) 'fixed order', b) RG-improved:

Towards a full understanding of ElectroWeak effects

- \star Top decays fast: $\Gamma(t \rightarrow bW) \sim 1.5~{\rm GeV}$
- * Up to now: $E = \sqrt{s} 2m_t \rightarrow E + i\Gamma_t$ in NRQCD. But: Not sufficient beyond NLO!
- \star Talk from André Hoang: 'Top decay and EW corrections at the $t\bar{t}$ threshold'
 - \rightarrow First results about consistent treatment of EW effects in vNRQCD:

Incl. e.g. irreducible non-resonant WWbb final states. Result for $\sigma_{
m tot}$

* See also talk from Giulia Zanderighi: 'Effective theories for unstable particle production'

Differential distributions for the threshold scan

- * $t\bar{t}$ threshold scan is mainly a *counting experiment* of $bW^+\bar{b}W^-$ coulour singlett states. However:
- Cuts needed to select $t\bar{t}$ from background
- Distributions needed to build realistic (higher order) Monte Carlo generators for the signal process
- Use of additional observables [not only $\sigma_{tot}(e^+e^- \rightarrow t\bar{t})$] will
 - add information,
 - help to disentangle correlations between parameters $(m_t, \alpha_s, \Gamma_t, y_t)$,
 - increase sensitivity to possible New Physics in production and decay.
- Observables are e.g. top momentum distribution, Forward-Backward Asymmetry, top polarization, W decay lepton spectra..

- Top momentum distribution $d\sigma/dp_t$ (~ |wave function in momentum space|²)
 - \rightarrow available at NNLO (modulo rescattering corrections, see below) \checkmark

 \rightarrow The peak of the top momentum distribution depends strongly on m_t , but is not very sensitive to α_s (\rightsquigarrow help against correlation of m_t and α_s in σ_{tot})

• Forward-Backward Asymmetry A_{FB}

 $t\bar{t}$ production through a virtual Z leads to a (small) P wave contribution. Interference with the leading S wave results in A_{FB} , depending strongly on the width Γ_t , less on α_s .

Polarization

- Unpolarized beams: -40% (longitudinal) polarized top quarks
- Polarized beams: highly polarized tops
 - \rightarrow all three polarization components calculable (NLO \checkmark)
 - \rightarrow sensitive e.g. to EDM's of top (BSM CP-violation), anomalous coupl. (like V + A)
- \rightarrow Experimental analysis needed!
- Rescattering corrections
- Cross-talk between $t-\bar{b}\text{, }\bar{t}-b$ and $b-\bar{b}$
- Strongly suppressed (zero at NLO) for inclusive $\sigma_{
 m tot}$
- Numerical results for rescattering corrections to $d\sigma/dp_t$, A_{FB} and top polarization NLO \checkmark , effect typically 10% (should be included for realistic Monte Carlo)
- Project started in Snowmass:
- \rightarrow Threshold analysis incl. distributions and rescattering, see talk from Stewart Boogert

Threshold effects in $t\bar{t}H$ production

- * In the region of large Higgs energy $t\bar{t}$ is collinear; must be treated as a non-relativistic system.
- * For $\sqrt{s} = 500$ GeV the $t\bar{t}$ threshold dynamics is crucial.
- **\star** Enhancement of $t\bar{t}H$ at NLL:

▶ Project at Snowmass: → Aurelio Juste

(talk from André Hoang)

