International Linear Collider Physics and Detector Workshop Snowmass — August 2005

Unstable particle production

An effective theory approach

Giulia Zanderighi

In collaboration with

M. Beneke (Aachen), A. Chapovsky (Aachen), N.Kauer (Aachen), A. Signer (Durham)

Unstable particles

Study of unstable particles $X \in \{W^{\pm}, Z, t, H(?) \dots\}$ close to resonance

Physical picture: separation of production, propagation and decay

Amplitude:

$$\mathcal{A}^{(\text{tree})}(q^2) = \mathcal{P}(q^2) \frac{ig^2}{q^2 - M^2} \mathcal{D}(q^2)$$

▶ non-integrable singularity for resonant unstable particle, i.e. $q^2 \sim M^2$

The problem

Dyson summation of self-energy Π

$$\mathcal{A}^{\text{("tree")}} = P(q^2) \frac{i}{q^2 - M^2 - \Pi(q^2)} D(q^2)$$

▶ $Im(\Pi) \neq 0$ (finite width) \longrightarrow pole off the real axis

resummation: divergence ~~> resonance

However: not a strict order-by-order expansion

The selection of only some *arbitrary* higher order corrections spoils properties valid order by order in PT (⇒ gauge invariance)!

Various "standard" approaches

Theoretical approaches

- **X** fixed width scheme
- **X** running width scheme
- X overall-factor scheme
- **X** complex mass scheme
- **X** fermion loop scheme
- **X** pole approximation

Problems/drawbacks

- *x* ad-hoc, no physical justification
- x predictions violate unitary
- *x* complex mass and weak mixing angles
- X unphysical effects off resonance
- **X** no hope to improve accuracy

- not clear how to extend these beyond NLO in α and Γ/M

• need rules for a systematic double expansion in α and Γ/M

Beyond

- X At Linear Collider need to go beyond DPA, e.g: $\Delta m_t \lesssim 100 \text{ MeV}$ $\Delta m_W \lesssim 10 \text{ MeV}$
- X Problem in Quantum Field Theory ! [Veltman 1963]

Two ways to go beyond

 higher order in $\alpha \longrightarrow$ beyond one loop standard PT expansion
 higher order in $\Gamma/M \longrightarrow$ beyond the pole approximation how to expand?

Characteristic feature: two physical scales formation/decay time 1/M, lifetime $1/\Gamma \gg 1/M \implies$ effective theory

Effective Theory

Our toy Model

The Lagrangian

$$\mathcal{L} = (D_{\mu}\phi)^{\dagger}D^{\mu}\phi - M^{2}\phi^{\dagger}\phi + \overline{\psi}i\not\!\!D\psi + \overline{\chi}i\not\!\partial\chi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{1}{2\xi}(\partial_{\mu}A^{\mu})^{2} + y\phi\overline{\psi}\chi + y^{*}\phi^{\dagger}\overline{\chi}\psi + \frac{\lambda}{4}(\phi^{\dagger}\phi)^{2} + \mathcal{L}_{ct}, \qquad D_{\mu} = \partial_{\mu} - igA_{\mu}$$

Matching procedure of effective theory to full theory is standard and involves three steps

- evaluate renormalized on-shell Green functions in full theory
- evaluate of the same quantity in the effective theory
- determine the hard matching coefficient so that the two calculations agree within the specified accuracy

Simplification: use dimensional regularization

Since the matching is onshell all effective theory loops vanish (scaleless integrals) \Rightarrow need only tree level terms in the effective theory

Singularities

 \Rightarrow a choice a *renormalization scheme* in the effective theory amounts to a choice of *factorization scheme*

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{HSET}} + \mathcal{L}_{\text{SCET}} + \mathcal{L}_{\text{int}}$$

$$= 2\hat{M}\phi_v^{\dagger}\left(iv \cdot D_s - \frac{\Delta}{2}\right)\phi_v + 2\hat{M}\phi_v^{\dagger}\left(\frac{(iD_{s,\top})^2}{2\hat{M}} + \frac{\Delta^2}{8\hat{M}}\right)\phi_v$$

$$- \frac{1}{4}F_{s\mu\nu}F_s^{\mu\nu} + \bar{\psi}_s i\mathcal{D}_s\psi_s + \bar{\chi}_s i\partial\chi_s + \bar{\psi}_{n_-}in_-D_s\frac{\eta_+}{2}\psi_{n_-}$$

$$+ C[y\phi_v\bar{\psi}_{n_-}\chi_{n_+} + h. c.] + \frac{yy^*D}{4\hat{M}^2}\left(\bar{\psi}_{n_-}\chi_{n_+}\right)\left(\bar{\chi}_{n_+}\psi_{n_-}\right) + \dots$$

Heavy Scalar Effective Theory (HSET)

• propagation of the heavy scalar and it's interaction with soft fields • $\Delta \equiv \frac{(\bar{s} - \hat{M}^2)}{\hat{M}}$ (pole scheme: $\Delta = -i\Gamma$ with Γ the onshell width) • unstable particle propagator is $\frac{i}{2\hat{M}(v \cdot k - \frac{\Delta^{(1)}}{2})}$

Soft Collinear Effective Theory (SCET)

propagation of energetic fermions and their interaction with SC fields [soft-collinear fields, i.e. fluctuations only around the classical trajectory]

interaction terms between heavy scalar and energetic fermions

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{HSET}} + \mathcal{L}_{\text{SCET}} + \mathcal{L}_{\text{int}}$$

$$= 2\hat{M}\phi_v^{\dagger}\left(iv \cdot D_s - \frac{\Delta}{2}\right)\phi_v + 2\hat{M}\phi_v^{\dagger}\left(\frac{(iD_{s,\top})^2}{2\hat{M}} + \frac{\Delta^2}{8\hat{M}}\right)\phi_v$$

$$- \frac{1}{4}F_{s\mu\nu}F_s^{\mu\nu} + \bar{\psi}_s i \not\!\!\!D_s \psi_s + \bar{\chi}_s i \not\!\!\!\partial \chi_s + \bar{\psi}_{n_-}in_- D_s \frac{\eta'_+}{2}\psi_{n_-}$$

$$+ C[y\phi_v\bar{\psi}_{n_-}\chi_{n_+} + h. c.] + \frac{yy^*D}{4\hat{M}^2}\left(\bar{\psi}_{n_-}\chi_{n_+}\right)\left(\bar{\chi}_{n_+}\psi_{n_-}\right) + \dots$$

Hard fluctuations in matching coefficients. At NLO need

- \checkmark **(b)** Δ to order α^2
- **D** $C to order <math>\alpha$
- D at tree level

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{HSET}} + \mathcal{L}_{\text{SCET}} + \mathcal{L}_{\text{int}}$$

$$= 2\hat{M}\phi_v^{\dagger}\left(iv \cdot D_s - \frac{\Delta}{2}\right)\phi_v + 2\hat{M}\phi_v^{\dagger}\left(\frac{(iD_{s,\top})^2}{2\hat{M}} + \frac{\Delta^2}{8\hat{M}}\right)\phi_v$$

$$- \frac{1}{4}F_{s\mu\nu}F_s^{\mu\nu} + \bar{\psi}_s i \not\!\!\!D_s \psi_s + \bar{\chi}_s i \not\!\!\!\partial \chi_s + \bar{\psi}_{n_-}in_- D_s \frac{\not\!\!\!/ + }{2}\psi_{n_-}$$

$$+ C[y\phi_v\bar{\psi}_{n_-}\chi_{n_+} + h. c.] + \frac{yy^*D}{4\hat{M}^2}\left(\bar{\psi}_{n_-}\chi_{n_+}\right)\left(\bar{\chi}_{n_+}\psi_{n_-}\right) + \dots$$

Hard fluctuations in matching coefficients. At NLO need

- \checkmark **(b)** Δ to order α^2
- D at tree level

• After deriving \mathcal{L}_{eff} to the required accuracy by matching calculations, compute amplitude in the effective theory using *conventional PT*

NLO line shape

- LO amplitude $T^{(0)}$ is a Breit Wigner
- poles cancel when adding hard and soft contributions, up to initial state collinear singularity [standard]

Plots: Inclusive line-shape

Inputs: $M_{Pole} = 100 \text{GeV}, \ \alpha_y(M_{pole}) = 0.1, \ \alpha_g(M_{pole}) = 0.1, \ \alpha_\lambda(M_{pole}) = 0.1^2/(4\pi)$

LO line-shape

Dashed: Pole Scheme, Solid: \overline{MS} Scheme ($M_{\overline{MS}}^{(1)} = 98.8$ GeV)

shown: partonic cross-sections with initial state singularity minimally subtracted

- effective theory result valid where $\sqrt{s} M \sim lpha M$
- matching of full and effective theory in intermediate region $\delta \sim \sqrt{s} M$ needed

Plots: Inclusive line-shape

Inputs: $M_{Pole} = 100 \text{GeV}, \ \alpha_y(M_{pole}) = 0.1, \ \alpha_g(M_{pole}) = 0.1, \ \alpha_\lambda(M_{pole}) = 0.1^2/(4\pi)$

NLO line-shape

- scheme dependence effect very small
- NLO correction $\sim -10\%$ at the peak and up to -30% in the above range

Plots: Inclusive line-shape

Inputs: $M_{Pole} = 100$ GeV, $\alpha_y(M_{pole}) = 0.1$, $\alpha_g(M_{pole}) = 0.1$, $\alpha_\lambda(M_{pole}) = 0.1^2/(4\pi)$ Ratio of NLO line-shapes

Solid: σ_{NLO}/σ_{LO} Dashed: σ_{NLO}/σ_{BW}

deviation from Breit-Wigner up to 15%

- output mass parameter of the Breit-Wigner fit differs from the input $M = 100 {\rm GeV}$ by $\delta M = 160 {\rm MeV}$
 - ➡ data should be fitted to theoretically predicted line-shapes rather than to BW-fits!

At NNLO need LO $\times (\alpha^2, \delta \alpha, \delta^2)$

Notation: $\alpha \Rightarrow \alpha_h, \alpha_s, \alpha_c$

At NNLO need LO $\times (\alpha^2, \delta \alpha, \delta^2)$

Notation: $\alpha \Rightarrow \alpha_h, \alpha_s, \alpha_c$

loop-order in	order of	matching
eff.theory	the operator	accuracy
$lpha_s, lpha_c$	δ	$lpha_h$

At NNLO need LO $\times (\alpha^2, \delta \alpha, \delta^2)$

Notation: $\alpha \Rightarrow \alpha_h, \alpha_s, \alpha_c$

loop-order in	order of	matching	
eff.theory	the operator	the operator accuracy	
$lpha_s, lpha_c$	δ	$lpha_h$	
LO	LO	NNLO	$lpha_h^2$

At NNLO need LO $\times (\alpha^2, \delta \alpha, \delta^2)$

Notation: $\alpha \Rightarrow \alpha_h, \alpha_s, \alpha_c$

loop-order in	order of	matching	
eff.theory	the operator	accuracy	
$lpha_s, lpha_c$	δ	$lpha_h$	
LO	LO	NNLO	$lpha_h^2$
LO	NLO	NLO	$\delta imes lpha_h$

At NNLO need LO $\times (\alpha^2, \delta \alpha, \delta^2)$

Notation: $\alpha \Rightarrow \alpha_h, \alpha_s, \alpha_c$

loop-order in	order of	matching	
eff.theory	the operator	accuracy	
$lpha_s, lpha_c$	δ	$lpha_h$	
LO	LO	NNLO	$lpha_h^2$
LO	NLO	NLO	$\delta imes lpha_h$
LO	NNLO	LO	δ^2

At NNLO need LO $\times (\alpha^2, \delta \alpha, \delta^2)$

Notation: $\alpha \Rightarrow \alpha_h, \alpha_s, \alpha_c$

loop-order in	order of	matching	
eff.theory	the operator	accuracy	
$lpha_s, lpha_c$	δ	$lpha_h$	
LO	LO	NNLO	$lpha_h^2$
LO	NLO	NLO	$\delta imes \alpha_h$
LO	NNLO	LO	δ^2
NLO	NLO	LO	$\delta imes lpha_{s/c}$

At NNLO need LO $\times (\alpha^2, \delta \alpha, \delta^2)$

Notation: $\alpha \Rightarrow \alpha_h, \alpha_s, \alpha_c$

loop-order in	order of	matching	
eff.theory	the operator	accuracy	
$lpha_s, lpha_c$	δ	$lpha_h$	
LO	LO	NNLO	$lpha_h^2$
LO	NLO	NLO	$\delta imes \alpha_h$
LO	NNLO	LO	δ^2
NLO	NLO	LO	$\delta\times\alpha_{s/c}$
NLO	LO	NLO	$lpha_h lpha_{s/c}$

At NNLO need LO $\times (\alpha^2, \delta \alpha, \delta^2)$

Notation: $\alpha \Rightarrow \alpha_h, \alpha_s, \alpha_c$

loop-order in	order of	matching	
eff.theory	the operator	accuracy	
$lpha_s, lpha_c$	δ	$lpha_h$	
LO	LO	NNLO	$lpha_h^2$
LO	NLO	NLO	$\delta imes lpha_h$
LO	NNLO	LO	δ^2
NLO	NLO	LO	$\delta \times \alpha_{s/c}$
NLO	LO	NLO	$\alpha_h \times \alpha_{s/c}$
NNLO	LO	LO	$lpha_{s/c}^2$

At NNLO need LO $\times (\alpha^2, \delta \alpha, \delta^2)$

Notation: $\alpha \Rightarrow \alpha_h, \alpha_s, \alpha_c$

Contributions at NNLO

loop-order in	order of	matching	
eff.theory	the operator	accuracy	
$lpha_s, lpha_c$	δ	$lpha_h$	
LO	LO	NNLO	$lpha_h^2$
LO	NLO	NLO	$\delta imes lpha_h$
LO	NNLO	LO	δ^2
NLO	NLO	LO	$\delta imes lpha_{s/c}$
NLO	LO	NLO	$\alpha_h imes \alpha_{s/c}$
NNLO	LO	LO	$lpha_{s/c}^2$

All contributions separately gauge invariant

<u>Motivation</u>: crucial for the precise determination of M_W

$$e^{+}(p_{1})e^{-}(p_{2}) \rightarrow W^{+}(k_{1})W^{-}(k_{2}) \rightarrow \mu(l_{1})\bar{\nu}_{\mu}(l_{2})u(l_{3})\bar{d}(l_{4}) \xrightarrow{p_{1}} k_{1} \xrightarrow{k_{1}} l_{2}$$

$$l_{2} \xrightarrow{l_{4}} l_{4}$$

$$p_{2} \xrightarrow{k_{2}} k_{2} \xrightarrow{l_{4}} l_{4}$$

$$l_{3}$$

Similarly to what has been done in the toy model the procedure is to

- integrate out hard modes and match to on-shell Greens functions
- subscription construct the Lagrangian for the W-field in terms of the NR vector field Ω (\rightsquigarrow NRQCD Lagrangian)
- systematically expand to the order required

 p_1

 p_2

At LO one needs

subscripts the production vertex $ee \rightarrow WW$

$$\mathcal{L}_{\mathcal{P}}^{(0)} = \frac{2\pi\alpha_{ew}}{M_W^2} \left(\bar{e}_L \gamma^{[i} i D^{j]} e_L\right) \left(\Omega_-^{*i} \Omega_+^{*j}\right)$$

resummation of $\mathcal{O}(\alpha_{ew})$ onshell self-energies in the propagators

$$\mathcal{L}_{\mathcal{NR}}^{(0)} = \sum_{\pm} \Omega_{\pm}^{*i} \left(iD^0 + \frac{\vec{D}^2}{2M_W} - \frac{\Delta_1}{2} \right) \Omega_{\mp}^i \qquad \underbrace{\mathcal{NR}}_{k_{1/2}}^{*i} \qquad \underbrace{\mathcal{NR}}_{k_{1/2}}^{*i} = \underbrace{\mathcal{NR}}_{\pm}^{*i} \left(iD^0 + \frac{\vec{D}^2}{2M_W} - \frac{\Delta_1}{2} \right) \Omega_{\mp}^i \qquad \underbrace{\mathcal{NR}}_{k_{1/2}}^{*i} = \underbrace{\mathcal{NR}}_{\pm}^{*i} \left(iD^0 + \frac{\vec{D}^2}{2M_W} - \frac{\Delta_1}{2} \right) \Omega_{\mp}^i \qquad \underbrace{\mathcal{NR}}_{k_{1/2}}^{*i} = \underbrace{\mathcal{NR}}_{\pm}^{*i} \left(iD^0 + \frac{\vec{D}^2}{2M_W} - \frac{\Delta_1}{2} \right) \Omega_{\mp}^i \qquad \underbrace{\mathcal{NR}}_{k_{1/2}}^{*i} = \underbrace{\mathcal{NR}}_{\pm}^{*i} \left(iD^0 + \frac{\vec{D}^2}{2M_W} - \frac{\Delta_1}{2} \right) \Omega_{\mp}^i \qquad \underbrace{\mathcal{NR}}_{k_{1/2}}^{*i} = \underbrace{\mathcal{NR}}_{\pm}^{*i} \left(iD^0 + \frac{\vec{D}^2}{2M_W} - \frac{\Delta_1}{2} \right) \Omega_{\mp}^i \qquad \underbrace{\mathcal{NR}}_{k_{1/2}}^{*i} = \underbrace{\mathcal{NR}}_{\pm}^{*i} \left(iD^0 + \frac{\vec{D}^2}{2M_W} - \frac{\Delta_1}{2} \right) \Omega_{\mp}^i \qquad \underbrace{\mathcal{NR}}_{k_{1/2}}^{*i} = \underbrace{\mathcal{NR}}_{k_{1/2}}^{*i} \left(iD^0 + \frac{\vec{D}^2}{2M_W} - \frac{\Delta_1}{2} \right) \Omega_{\mp}^i \qquad \underbrace{\mathcal{NR}}_{k_{1/2}}^{*i} = \underbrace{\mathcal{NR}}_{k_{1/2}}^{*i} \left(iD^0 + \frac{\vec{D}^2}{2M_W} - \frac{\Delta_1}{2} \right) \Omega_{\mp}^i \qquad \underbrace{\mathcal{NR}}_{k_{1/2}}^{*i} = \underbrace{\mathcal{NR}}_{k_{1/2}}^{*i} \left(iD^0 + \frac{\vec{D}^2}{2M_W} - \frac{\Delta_1}{2} \right) \Omega_{\mp}^i \qquad \underbrace{\mathcal{NR}}_{k_{1/2}}^{*i} = \underbrace{\mathcal{NR}}_{k_{1/2}}^{*i} \left(iD^0 + \frac{\vec{D}^2}{2M_W} - \frac{\Delta_1}{2} \right) \Omega_{\mp}^i = \underbrace{\mathcal{NR}}_{k_{1/2}}^{*i} \left(iD^0 + \frac{\vec{D}^2}{2M_W} - \frac{\Delta_1}{2} \right) \mathcal{NR}_{\mp}^i = \underbrace{\mathcal{NR}}_{k_{1/2}}^{*i} \left(iD^0 + \frac{\vec{D}^2}{2M_W} - \frac{\Delta_1}{2} \right) \mathcal{NR}_{\mu_{1/2}}^{*i} = \underbrace{\mathcal{NR}}_{\mu_{1/2}}^{*i} \left(iD^0 + \frac{\vec{D}^2}{2M_W} - \frac{\Delta_1}{2} \right) \mathcal{NR}_{\mu_{1/2}}^{*i} = \underbrace{\mathcal{NR}}_{\mu_{1/2}}^{*i} \left(iD^0 + \frac{\vec{D}^2}{2M_W} - \frac{\Delta_1}{2} \right) \mathcal{NR}_{\mu_{1/2}}^{*i} = \underbrace{\mathcal{NR}}_{\mu_{1/2}}^{*i} \left(iD^0 + \frac{\vec{D}^2}{2M_W} - \frac{\Delta_1}{2} \right) \mathcal{NR}_{\mu_{1/2}}^{*i} = \underbrace{\mathcal{NR}}_{\mu_{1/2}}^{*i} \left(iD^0 + \frac{\vec{D}^2}{2M_W} - \frac{\Delta_1}{2} \right) \mathcal{NR}_{\mu_{1/2}}^{*i} = \underbrace{\mathcal{NR}}_{\mu_{1/2}}^{*i} \left(iD^0 + \frac{\vec{D}^2}{2M_W} - \frac{\Delta_1}{2} \right) \mathcal{NR}_{\mu_{1/2}}^{*i} = \underbrace{\mathcal{NR}}_{\mu_{1/2}}^{*i} \left(iD^0 + \frac{\vec{D}^2}{2M_W} - \frac{\Delta_1}{2} \right) \mathcal{NR}_{\mu_{1/2}}^{*i} = \underbrace{\mathcal{NR}}_{\mu_{1/2}}^{*i} \left(iD^0 + \frac{\vec{D}^2}{2M_W} - \frac{\Delta_1}{2} \right) \mathcal{NR}_{\mu_{1/2}}^{*i} = \underbrace{\mathcal{NR}}_{\mu_{1/2}}^{*i} \left(iD^0 + \frac{\Delta_1}{2M_W} - \frac{\Delta_1}{2} \right) \mathcal{NR}_{\mu_{1/2}}^{*i} = \underbrace{\mathcal{NR}}_{\mu_{1/2}}^{*i} = \underbrace{\mathcal{NR}}_{\mu_{1/2}}^{*i} = \underbrace{\mathcal{NR}}_{\mu_{1/2}}^{*i} = \underbrace{\mathcal{NR}}_$$

If the level matching for the decay vertices $W
ightarrow lar{l}$

$$\mathcal{L}_{\mathcal{D}}^{(0)} = -\frac{g_{ew}}{\sqrt{2}}\Omega_{-}^{i}\bar{\mu}_{L}\gamma^{i}\nu_{L} - \frac{g_{ew}}{\sqrt{2}}\Omega_{+}^{i}\bar{u}_{L}\gamma^{i}d_{L}$$

 \Rightarrow combining these ingredients one obtains the LO amplitude

At $N^{1/2}LO$, i. e. $LO \times \mathcal{O}(\alpha_s, v)$

- Production stage: include v-corrections $\Rightarrow \mathcal{L}_P^{(1/2)}$
- Propagation: include $\alpha_s \alpha_{ew}$ corrections $\Rightarrow \mathcal{L}_{NR}^{(1/2)}$
- Decay stage: include α_s corrections (however they cancel if one is inclusive on hadronic decay products)
- Furthermore: include exchange of one potential photon ($q^0 \sim Mv^2, \vec{q} \sim Mv$), this gives a correction $\mathcal{O}(\alpha_{ew}/v)$

 \Rightarrow combining these terms gives the $N^{1/2}LO$ amplitude.

MB,NK,AS,GZ [hep-ph/0411008]

Similarly one obtains NLO, $N^{3/2}LO$... amplitudes (where at higher orders soft contribution must be also included)

- X Perturbative treatment of unstable particles requires partial summation of PT series
- **X** however the guiding principle of resummation was not understood
- **X** breakdown of weak coupling PT related to the appearance of a second small parameter ($\alpha, \Gamma/M$)
- \mathbf{X} we take the attitude that $\Gamma \ll M$ is the characteristic feature
- *X* other issues (resummation, gauge invariance ...) follow automatically in a theory that formulates the expansion correctly
- X Two-scale problem → effective field theory (H"Q"ET + SCET)
- \checkmark mode expansion \implies strategy of regions

References

M. Beneke, A. Chapovsky, A. Signer, GZ

Phys. Rev. Lett. 93 (2004) 011602 [brief] & Nucl. Phys. B 686 (2004) 205-247 [details]

Advantages of field theory methods

- split calculations in well-defined pieces (matching, matrix elements, loops)
 ⇒ calculation efficient and transparent
- power counting scheme in the small parameters (α , δ) ⇒ identification of terms required to achieve a certain accuracy
- Feynman rules to compute the minimal set of terms required ⇒ since one does not compute "too much", calculations are as simple as possible
- gauge invariance is automatic
- Calculations can be extended to any accuracy in α, δ [at the price of performing complicated, but standard loop integrals]
- **s** resummation of $Log(M/\Gamma)$ standard using R.G. techniques