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Unstable particle production

An effective theory approach
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Unstable particles

Study of unstable particles X < {W*, Z, ¢, H(?)...} close to resonance

Physical picture: separation of production, propagation and decay

Amplitude: _ _ _
. 2 » non-integrable singularity for

tree) [ 2 2 g 2
Al (¢%) =P(q )q2 — M2D(q ) resonant unstable particle, i.e. ¢* ~ M?
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The problem

__._‘_,_.§\ Dyson summation of self-energy II

(“tree”) _ 2 2 2
A P(q )q2 _MQ_H(qg)D(q )

Im(II) # O (finite width)  ~ pole off the real axis

resummation: divergence ~ resonance

A However: not a strict order-by-order expansion

[1 The selection of only some arbitrary higher order corrections

spoils properties valid order by order in PT (= gauge invariance)! @
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Various “standard” approaches

Theoretical approaches

fixed width scheme
running width scheme
overall-factor scheme
complex mass scheme

fermion loop scheme

[ OO o OO o

pole approximation

A Problems/drawbacks

[]
[]
L]

L]

ad-hoc, no physical justification
predictions violate unitary
complex mass and weak

mixing angles

unphysical effects off resonance

no hope to improve accuracy

|

[0 not clear how to extend these beyond NLO in v and '/ M

[ need rules for a systematic double expansion in o and I'/M
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Beyond

[1 At Linear Collider need to go beyond DPA, e.g:
Am; <100 MeV  Amy <10 MeV NG

[1 Problem in Quantum Field Theory ! [Veltman 1963]

Two ways to go beyond

# higher order in « — beyond one loop
standard PT expansion

® higherorderinT'/M — beyond the pole approximation

how to expand?

[1 Characteristic feature: two physical scales
formation/decay time 1/M, lifetime 1/1" > 1/M = effective theory
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Effective Theory

underlying L(Sn, r /e, D)
theory dynamical modes:

hard, resonant/collinear, soft

Integrate out
hard modes factorizable non-factorizable
v correﬁns frrectlons
. ['eff — r/cy¥s
effective en(D) On(@r/e; &)
dynamlcal modes:
theory .
resonant/collinear, soft
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Our toy Model

The Lagrangian

L= (D) D6 — M6t + Gl +Xi 9x — 3 Fyus ™

1 o |
+ i((’?MA”)Q +ydbx + y oI + Z(chqﬁ)Q +Les, D,=0,—igA,

The process [economic version of ud — W~ — e~ 7]
€ e
_ - B B ) 0,
e (p1) ve(p2) — ¢ (¢, M) — e (q1) Ve(q2) ¢ /

Cam NG,
¢ = (p1 +p2)2 - \ v

q2 L M2
M2

close to resonance: ¢ = ~a~T/M<1

The couplings a4 = Oy =
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Matching

Matching procedure of effective theory to full theory is standard and
Involves three steps
[1 evaluate renormalized on-shell Green functions in full theory
[1 evaluate of the same quantity in the effective theory

[0 determine the hard matching coefficient so that the two calcula-
tions agree within the specified accuracy

[1 Simplification: use dimensional regularization
Since the matching is onshell all effective theory loops vanish (scale-
less integrals) = need only tree level terms in the effective theory

Unstable particles- November 2004 — p. 8/Z



Singularities

virtual real

renormalization

® use strategy of regions to
separate hard/soft

# splitinto hard and soft
modes introduces additional
singularities

factorization

#® matching coefficients will
have 1 /¢ divergences

IR regulator

<«—> B ® they correspond to UV diver-
gences In the effective theory

= a choice a renormalization scheme In the effective theory amounts to a
choice of factorization scheme
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he NLO effective Lagrangian

Leg = Luser + LsceT + Lint

= zng(w-Dy—%>¢v+zM¢1(

~ + —
2M 8M

/2
2
(QE”—X?’H-) ()Zn+¢n_) + ...

(iDy1)? A2 ) N

1

o 1 S,W/Féuy —+ 77582'@877&8 + XSZ @Xs + @En_in—Ds

+ Clydwtn Xn, +h.c. ]+

U

yy* D
AN 2

Heavy Scalar Effective Theory (HSET) e\N\/,Z

[] propagation of the heavy scalar and it’s interaction with soft fields

[0 A = E=20 (pole scheme: A = —iT" with I" the onshell width)

. . (}
[] unstable particle propagator is —

2M (v -k — 857)
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he NLO effective Lagrangian

Leg = LuseTr + Lscer + Ling
A A A
— 2Mc/5l (iv-DS—§>¢v+2M¢l (

1

o ZFS,LWF;LV_F?LS?:QS@DS_'_)_(S?: @XS +77;n_7;n—Ds

— + —
2M 8M

Tt
2
(&H—anu) (er wn_) + ...

(iDs T)? AQ)%

U

yy* D
AM2

+ Clygptn_ Xn, +h.c.]+

Soft Collinear Effective Theory (SCET) e\[\:vi

[] propagation of energetic fermions and their interaction with SC fields

[soft-collinear fields, i.e. fluctuations only around the classical trajectory]
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he NLO effective Lagrangian

Leg = Luser + LsceT + Lint

A A . D, 1) AZ?
— ZMM%(W-Dy—§>¢U+2M¢l<@2&Q &M>¢v

1 P o _
B Z FSW/Fg + %’LJDS% T Xs? @XS + wn—zn_D d—F wn_

yy-D
_I_ [yqbvwn XTL_|_ +h C. ]

)(xn+¢n

Interaction: production/decay vertices :.< X

[] interaction terms between heavy scalar and energetic fermions
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he NLO effective Lagrangian

Leg = Luser + LsceT + Lint

) A R . 2 2
— oMt (w-DS—§>¢U+2M¢L ((22};) +8A—M>¢v

/2
2
(QE”—X?’H-) ()Zn+¢n_) + ...

Hard fluctuations in matching coefficients. At NLO need

1

o Z SW/Féuj T &Siﬁsws + )287/ @XS + @En_in—Ds

+ Clydwtn Xn, +h.c. ]+

U

yy* D
AN 2

® A to order o?
® ('toorder «

® D attree level
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he NLO effective Lagrangian

Leg = Luser + LsceT + Lint
. | A X (iDsT)* = A?
— le(w.Ds__> U+2M1( R R S
¢ 2 ¢ ¢ 2M SM ¢
1 7y

o Z SW/FSV T &Siﬁsws + )282 @XS + @En_in—Ds

+ Clydwtn Xn, +h.c. ]+

7¢n_
(QE”—X?’H-) ()Zn+¢n_) + ...

Hard fluctuations in matching coefficients. At NLO need

yy* D
AN 2

® A to order o?
® ('toorder «

® D attree level

[1 After deriving L.g to the required accuracy by matching calculations,
compute amplitude in the effective theory using conventional PT
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NLO line shape

1)12 2
» oA +A( )
8DM 2D

> < > < >< i T =i TOx
AWM
WithDE\/_—]\I—A2

#® L O amplitude 7@ s a Breit Wigner

2
AL2 4042

i TV =i T xq, -

with L = 1n (ﬂ)
L4

® poles cancel when adding hard and soft contributions, up to initial
state collinear singularity [standard]
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Plots: Inclusive line-shape

Inputs: Mpye = 100GeV, ay(Mpere) = 0.1, ag(Mpore) = 0.1, ax(Mpyoe) = 0.12/(4)

LO line-shape
Dashed: Pole Scheme, Solid: M S Scheme (M% = 98.8 GeV)
0.0015 ‘ ‘ ‘ ‘ ‘ 0.01 m
,’: |‘| combined
I\ — effective theory |
0.001- ---- full theory ]
o
[GGV_Q] < 0.0001
0.0005}~

O——9 9 10 102 104 1e-085 | 100 | 150
V3 [GeV] V5 [GeV]
shown: partonic cross-sections with initial state singularity minimally subtracted

effective theory result valid where /s — M ~ aM

matching of full and effective theory in intermediate region § ~ /s — M needed
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Plots: Inclusive line-shape

Inputs: Mpoie = 100GeV, O{y(Mpole) = 0.1, ag(Mpole> = 0.1, aA(Mpole) = 0.12/(471')

NLO line-shape

0.0014
Dashed: Pole Scheme
0.0012 1 Solid: MS Scheme
0.001 . (Mﬂ = 99.1 GeV)
o MS
(Gev—2] %90 Blue: NLO
00006 Magenta: LO

0.0004

0.0002

% o8 100 102 104
Vs |GeV]

[1 scheme dependence effect very small

[J NLO correction ~ —10% at the peak and up to —30% in the above range
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Plots: Inclusive line-shape

Inputs: Mpye = 100GeV, ay(Mpere) = 0.1, ag(Mpore) = 0.1, ax(Mpyoe) = 0.12/(4)

Ratio of NLO line-shapes

Solid: UNLO/ULO
Dashed: UNLO/UBW

96 98 100 102 104

Vs [GeV]
deviation from Breit-Wigner up to 15%

output mass parameter of the Breit-Wigner fi differs from the input M = 100GeV by
oM = 160MeV
[1 data should be fited to theoretically predicted line-shapes rather than to BW-fis!
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Beyond NLO

At NNLO need LO x(a?,da, 62) Notation: a = ay, as, v,
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Beyond NLO

At NNLO need LO x(a?,da, 62)

Contributions at NNLO

loop-order in order of matching
eff.theory the operator | accuracy
Oés, aC 5 Oéh

Notation: o = oy, oy, o
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Beyond NLO

At NNLO need LO x(a?,da, 62) Notation: a = ay, as, v,

Contributions at NNLO

loop-order in order of matching
eff.theory the operator | accuracy
s, Qe ) oy, 04}2Z
LO LO NNLO | o3
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Beyond NLO

At NNLO need LO x(a?,da, 62) Notation: a = ay, as, v,

Contributions at NNLO

loop-order in order of matching
eff.theory the operator | accuracy
Oés, Oéc 5 Oéh
LO LO NNLO ai
p
LO NLO NLO d X ap,
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Beyond NLO

At NNLO need LO x(a?,da, 62)

Contributions at NNLO

Notation: o = oy, oy, o

loop-order in order of matching
eff.theory the operator | accuracy
s, Ol o) ap
LO LO NNLO o
LO NLO NLO d X ayp,
LO NNLO LO 52

Unstable particles- November 2004 — p. 15/



Beyond NLO

At NNLO need LO x(a?,da, 62)

Contributions at NNLO

Notation: o = oy, oy, o

loop-order in order of matching
eff.theory the operator | accuracy
s, Ol o) ap
LO LO NNLO o
LO NLO NLO d X ap,
LO NNLO LO 52
NLO NLO LO § X 0t
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Beyond NLO

At NNLO need LO x(a?,da, 62)

Contributions at NNLO

Notation: o = oy, oy, o

loop-order in order of matching
eff.theory the operator | accuracy
s, Ol o) ap
LO LO NNLO o
LO NLO NLO d X ap,
LO NNLO LO 52
NLO NLO LO § X 0ty
NLO LO NLO apQ /e
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Beyond NLO

At NNLO need LO x(a?,da, 62)

Contributions at NNLO

Notation: o = oy, oy, o

loop-order in order of matching
eff.theory the operator | accuracy
s, Ol o) ap
LO LO NNLO o
LO NLO NLO d X ap,
LO NNLO LO 52
NLO NLO LO § X 0t
NLO LO NLO Qp X Qg /e
NNLO LO LO a?,,

/

\
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Beyond NLO

At NNLO need LO x(a?,da, 62)

Contributions at NNLO

Notation: o = oy, oy, o

loop-order in order of matching
eff.theory the operator | accuracy
s, Ol o) ap
LO LO NNLO o
LO NLO NLO d X ayp,
LO NNLO LO 52
NLO NLO LO § X 0t
NLO LO NLO Qp X Qg /e
NNLO LO LO a§ /e

(1 All contributions separately gauge invariant
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WW at threshold at eTe~ collider

Motivation: crucial for the precise determination of My

_ _ _ = [

e (pr)e” (p2) — W (k)W (k2) — p(l) 7 (l2)u(ls)d(ls) P1 k1 ll
2

counting: aem ~ af ~v?  kyjp ~ {M(1+0?), £Mv} k> .
[3

Similarly to what has been done in the toy model the procedure is to
# integrate out hard modes and match to on-shell Greens functions

® construct the Lagrangian for the WW-field in terms of the NR vector
field 2 (~~ NRQCD Lagrangian)

®» systematically expand to the order required
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WW at threshold at LO

At LLO one needs

® tree level matching for the production vertex ee — WIW

P1 ]Cl
M‘%V (éLfy[ZiDj]eL) (Q?Qf) p2>’%

2T Qe

LY =

$ resummation of O (a.,,) onshell self-energies in the
propagators

D*z Q
(0) E 0 1 z VAVAVA 2VAVAV.

® tree level matching for the decay vertices W — 1]

ﬁ%)) 9\;%091 aLy've — EQ+’L_LL’Y dr, Mll/fi
1/2 l2/4

= combining these ingredients one obtains the LO amplitude
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WW at threshold at NY/2L0O

At NY2LO,i. e. LO x O (o, v)

» Production stage: include v-corrections = £'1/?)

Propagation: include aa.,, corrections = Ef\%f)

Decay stage: include o, corrections (however they cancel if

one is inclusive on hadronic decay products)

» Furthermore: include exchange of one potential ~ ** k l
N . . 2
photon (¢° ~ Mv?, 7 ~ Mv), this gives a 5 q L
correction O (aey /v) P2 2 I

= combining these terms gives the N1/2 O amplitude.
MB,NK,AS,GZ [hep-ph/0411008]

Similarly one obtains NLO, N3/2LO ... amplitudes (where at higher
orders soft contribution must be also included)
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Summary

[ Perturbative treatment of unstable particles requires partial
summation of PT series

[1 however the guiding principle of resummation was not understood

[] breakdown of weak coupling PT related to the appearance of a
second small parameter («, I' /M)

[] we take the attitude that I' < M is the characteristic feature

[] other issues (resummation, gauge invariance ...) follow
automatically in a theory that formulates the expansion correctly

[] Two-scale problem ~- effective field theory (H"Q"ET + SCET)

[ mode expansion — strategy of regions

[1 References
M. Beneke, A. Chapovsky, A. Signer, GZ
Phys. Rev. Lett. 93 (2004) 011602 [brief] & Nucl. Phys. B 686 (2004) 205-247 [details]
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Advantages of field theory methods

split calculations in well-defined pieces (matching, matrix elements, loops)

= calculation efficient and transparent

power counting scheme in the small parameters («, §)

= identification of terms required to achieve a certain accuracy

Feynman rules to compute the minimal set of terms required

= since one does not compute “too much”, calculations are as simple as possible
gauge invariance is automatic

calculations can be extended to any accuracy in o, ¢

[at the price of performing complicated, but standard loop integrals]

resummation of Log(M /T") standard using R.G. techniques
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