Understanding LIGHT Why we need a terascale photon collider

> Zack Sullivan Argonne National Laboratory August 22, 2005

Outline

- 1. Precision Higgs the usual suspect
- 2. $b\overline{b}$ production as a window on light
- 3. What can we say about it now?
- 4. Conclusions

Precision Higgs

Measure: $\Gamma(h \rightarrow \gamma \gamma) \sim 2\%$ $\Gamma_{tot}(h) \sim 10\%$

- NLO bb/cc: J=0 ≈ J=2
 - J=0 really LO
- How big is the resolved term?

P. Nieżurawski, A. F. Żarnecki, M. Krawczyk presented by J. Ciborowski

WE DO NOT UNDERSTAND

LIGHT

WE DO NOT UNDERSTAND (the structure of)

LIGHT

bb production through direct and resolved photons

Resolved

Photon spectrum and simulation

Full $\gamma\gamma$ spectrum is flatter than predicted by Compton scattering alone.

$$\sqrt{S}_{ee} = 500 \text{ GeV}$$

- $-W\gamma\gamma$ = 50-400 GeV
- $E\gamma = 25-200$ GeV, using a flat spectrum
- Results insensitive to actual shape
- Cuts $E_{Tb} > 40 \text{ GeV}, |\eta_b| < 4$ $\Delta R_{iso} = 0.1$ $M_{bb} > 80 \text{ GeV}$

bb cross section

bb cross section

bb cross section

The single-resolved mode completely dominates the cross section below $\sim \frac{1}{3}W_{\gamma\gamma}^{max}$.

Uncertainty in resolved-resolved cross section

•CJK2 LO PDFs

- Error calculation is
 based on Hessian
 matrix method
- For observables use a "modified tolerance"
 method" zs, PRD 66, 075011 (02)

$$\delta \sigma_{\pm} = \frac{T}{10} \sqrt{\Sigma_i (\sigma_i - \sigma_0)^2} |_{\sigma_i > \sigma_0}$$

 Assumes fit parameters can be mapped to a hypersphere – Hessian distribution.

CJK2 vs. GRV / Hessian vs. Lagrange

500450 ${
m CJK}~\chi^2$ 400350Hessian 10% error 300 20% error 30% error Lagrange 2500.120.13 0.11 0.140.150.16 $F_{2,c}^{\gamma}/\alpha$ at $x = 0.2, Q^2 = 20 \text{ GeV}^2$

c, b PDFs differ significantly at large *x*. Well beyond estimated uncertainties.

 Already at 4 GeV, the c (b?) are not really Hessian any longer.

Uncertainty in $g\gamma \rightarrow b\overline{b}$

 Huge uncertainty in the gluon PDF.
 Very little data to constrain it.
 Tolerance *T* is

much larger for the gluon.

	$T(G^{\gamma})$	$T(d^{\gamma})$	$T(u^{\gamma})$	$T(s^{\gamma})$	$T(F_2^{\gamma})$
$1 \le Q^2 \le 100 \text{ GeV}^2$	4.5	7.0	7.0	3.4	8
$1 \le Q^2 \le 1000 \text{ GeV}^2$	14.0	7.0	7.0	3.4	10.5
$1 \leq Q^2 \leq 200000 \text{ GeV}^2$	138.0	7.0	7.0	3.4	20.0

Summary of fit data

Total uncertainty for bb

 This will only be improved by direct measurement at a real photon collider.

bb at HERA / LEP

- Theory underestimates the cross section at both HERA and LEP by factors of 2-3!
- It seems likely this is partially due to additional resolved photons.

Conclusions

- Below ~ $\frac{1}{3}W_{\gamma\gamma}^{max}$, theorists should think of $\gamma\gamma$ colliders as clean hadron colliders.
- In order to predict cross sections to better than factors of 5, we must measure the structure of the photon in situ.
- Today we do not understand LIGHT, but with a terascale photon collider, WE WILL

Extra Slides

bb cross section with lower cuts

S_{ee} = 500 GeV

 - Wγγ = 50-400 GeV
 - Eγ = 25-200 GeV,
 using a flat spectrum

 Cuts

 $E_{Tb} > 15 \text{ GeV}, |\eta_b| < 4$ $\varDelta R_{iso} = 0.1$ $M_{bb} > 80 \text{ GeV}$

• Looser cuts fill in direct production near M_{bb} ~80 GeV, but $g\gamma \rightarrow b\overline{b}$ grows much more quickly.