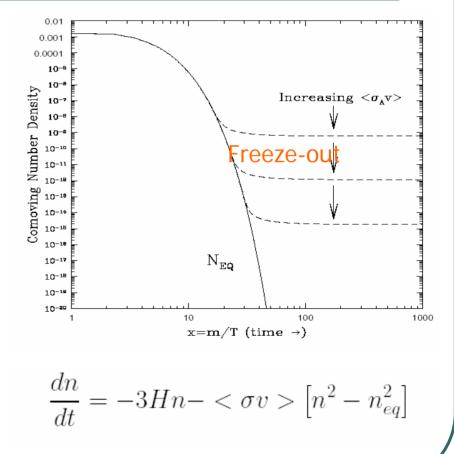
Status of micromegas

G. BélangerF. BoudjemaA. PukhovA. Semenov

Plan


- Motivation and general presentation
- Description of micromegas_1.3.6
- micromegas_nmssm
- New developments
- Outlook and conclusion

Motivation

- Strong evidence for dark matter
- CMB (WMAP) gives precise information on the amount of dark matter
- Most attractive explanation for dark matter: new weakly interacting particle, for example those present in R-parity conserving SUSY model
- WMAP measurement strongly constrains models of cold dark matter in particular supersymmetric models
- Need for a precise and accurate computation of the relic density of dark matter
- Codes that compute relic density +...:
 - Neutdriver, DarkSUSY, micrOMEGAs, Isatools
 - Many private codes: SSARD (Olive), Drees, Roskowski …

Relic density of wimps

- In early universe WIMPs are present in large number and they are in thermal equilibrium
- As the universe expanded and cooled their density is reduced through pair annihilation
- Eventually density is too low for annihilation process to keep up with expansion rate
 - Freeze-out temperature
- LSP decouples from standard model particles, density depends only on expansion rate of the universe

Relic density

$$\Omega_X h^2 \approx \frac{3 \times 10^{-27} \mathrm{cm}^3 \mathrm{s}^{-1}}{\langle \sigma v \rangle}$$

 A relic density in agreement with present measurements Ωh² ~0.1 requires typical weak interactions cross-section

Coannihilation

- If M(NLSP)~M(LSP) then $\chi + X \rightarrow \chi' + Y$ maintains thermal equilibrium between NLSP-LSP even after SUSY particles decouple from standard ones
- Relic density depends on rate for all processes involving LSP/NLSP \rightarrow SM
- All particles eventually decay into LSP, calculation of relic density requires summing over all possible processes

$$<\sigma v>=\frac{\sum\limits_{i,j}g_{i}g_{j}}{2T(\sum\limits_{i}g_{i}m_{i}^{2}K_{2}(m_{i}/T))^{2}}\frac{ds\sqrt{s}K_{1}(\sqrt{s}/T)p_{ij}^{2}\sigma_{ij}(s)}{2T(\sum\limits_{i}g_{i}m_{i}^{2}K_{2}(m_{i}/T))^{2}}$$

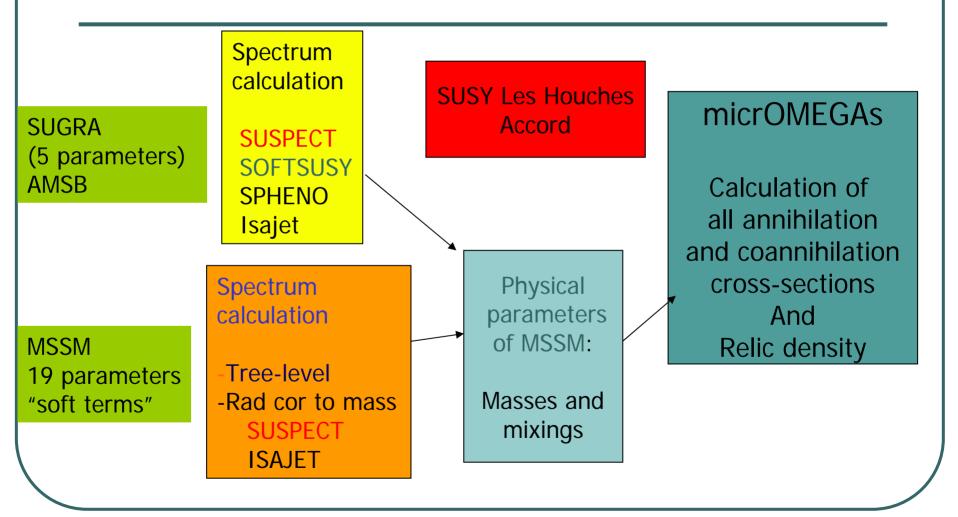
Important processes are those involving particles close in mass to LSP

micromegas

- C code
- Complete tree-level matrix elements for all subprocesses
- Include all possible annihilation and coannihilation channels
- Calculates the relic density for any LSP
- Based on CalcHEP
- Uses the CompHEP/CalcHEP-SUSY model file obtained with LANHEP (A. Semenov)
- Solution of evolution equation and calculation of relic density with nonrelativistic thermal averaging and proper treatment of poles and thresholds (Gondolo, Gelmini, NPB 360 (1991)145)
- Automatically check for presence of resonances and improves the accuracy near pole
- Includes and compiles relevant channels only if needed
- Loop-corrected Higgs masses and widths (via spectrum calculator)
- QCD corrections to Higgs couplings to fermion pairs and Δm_b corrections at large tan β (use effective Lagrangian)

Higgs sector

General CP conserving effective potential


$$\begin{aligned} V_{eff} &= (m_1^2 + \mu^2) |H_1|^2 + (m_2^2 + \mu^2) |H_2|^2 - [m_{12}^2 (\epsilon H_1 H_2) + h.c.] \\ &+ \frac{1}{2} [\frac{1}{4} (g^2 + g'^2) + \lambda_1] (|H_1|^2)^2 + \frac{1}{2} [\frac{1}{4} (g^2 + g'^2) + \lambda_2] (|H_2|^2)^2 \\ &+ [\frac{1}{4} (g^2 - g'^2) + \lambda_3] |H_1|^2 |H_2|^2 + [-\frac{1}{2} g^2 + \lambda_4] (\epsilon H_1 H_2) (\epsilon H_1^* H_2^*) \\ &+ (\frac{\lambda_5}{2} (\epsilon H_1 H_2)^2 + [\lambda_6 |H_1|^2 + \lambda_7 |H_2|^2] (\epsilon H_1 H_2) + h.c.) \end{aligned}$$

- λ's include higher order corrections, extracted from Higgs masses and mixings (Boudjema, Semenov, hep-ph/0201219)
- SUSY-QCD correction to Higgs->bb, effective Lagrangian, relevant at large tanβ (Guasch, Hapfliger, Spira, hep-ph/0305101)

$$\mathcal{L}_{eff} = \sqrt{4\pi\alpha_{QED}} \frac{m_b}{1 + \Delta m_b} \frac{1}{2M_W \sin \theta_W} \left[-Hb\bar{b}\frac{\cos\alpha}{\cos\beta} \left(1 + \frac{\Delta m_b \tan\alpha}{\tan\beta} \right) + iAb\bar{b}\tan\beta \left(1 - \frac{\Delta m_b}{\tan\beta^2} \right) + hb\bar{b}\frac{1}{\cos\beta} \left(1 - \frac{\Delta m_b}{\tan\alpha\tan\beta} \right) \right]$$

. . .

- Input parameters for relic density module are physical parameters of SHLA, flexibility: any model for which the MSSM spectrum can be calculated with an external code can be incorporated easily
- Input parameters to micromegas can be specified at the weak scale or at the GUT scale using some spectrum calculator program (default is SUSPECT), includes mSUGRA, non-univ. SUGRA, AMSB
- CalcHEP is included: computes all cross-sections for 2->2 processes in SUSY and all 1-> 2 decays in SUSY
- Interactive link to CalcHEP
- Package include other constraints
 - [▶] b->s gamma (NLO) , (g-2) _μB_s->μμ, Δρ

Comparaisons: micrOMEGAs1.3 / Darksusy4.0

 Extensive checks with DarkSUSY_4.0, now in very good agreement, some differences at large tanβ (due to Δm_b corrections)

name	M_0	$M_{1/2}$	A_0	aneta	$sgn(\mu)$	micrOMEGAs1.3	DarkSUSY4.0
А	107	600	0	5	1	0.0944	0.0929
В	57	250	0	10	1	0.124	0.121
С	80	400	0	10	-1	0.117	0.115
D	101	525	0	20	1	0.0876	0.0864
G	113	375	0	20	1	0.133	0.129
Н	244	935	0	20	1	0.166	0.163
Ι	181	350	0	35	1	0.142	0.132
J	299	750	0	35	1	0.102	0.0975
K	1001	1300	0	46	-1	0.0893	0.0870
\mathbf{L}	303	450	0	47	1	0.114	0.0982 ←

Difference when LSP~10TeV

sugomg 107 600 0 5 1

will produce the following output:

Higgs masses and widths

h	:	Mh	=	116.0	(wh	=2.5E-03)
Н	:	MHH	=	899.2	(wHh	=1.9E+00)
HЗ	:	МНЗ	=	898.5	(wH3	=2.2E+00)
H+	:	MHc	=	902.0	(wHc	=2.3E+00)

Masses of SuperParticles:

~o1 :	MNE1	=	249.1		~11	:	MSl1	=	254.2	L	~eR	:	MSeR	=	256.0
~mR :	MSmR	=	256.0		~nl	:	MSnl	=	413.1	L	~ne	:	MSne	=	413.4
\tilde{n} nm :	MSnm	=	413.4		~eL	:	MSeL	=	420.2	L	~mL	:	MSmL	=	420.2
~12 :	MS12	=	420.4		~1+	:	MC1	=	468.3	L	~o2	:	MNE2	=	468.5
~o3 :	MNE3	=	780.0		~2+	:	MC2	=	793.2	L	~o4	:	MNE4	=	794.3
~t1 :	MSt1	=	946.7		~b1	:	MSb1	=	1153.1	L	~b2	:	MSb2	=	1187.8
$^{\sim} dR$:	MSdR	=	1188.4		ĩsR	:	MSsR	=	1188.4	L	~t2	:	MSt2	=	1190.6
~uR :	MSuR	=	1194.8		~cR	:	MScR	=	1194.8	L	~uL	:	MSuL	=	1248.2
~cL :	MScL	=	1248.2		~dL	:	MSdL	=	1250.5	L	ĩsL	:	MSsL	=	1250.5
~g :	MSG	=	1358.1												
Xf=2.6	67e+01	Ome	ega=8.87	7e-(02										

Channels	which contribute	to $1/(omega)$ more than 1%.
Relative	contrubutions in	% are displyed
1% ~o1	~o1 -> l L	
3% ~o1	~l1 -> Z l	
12% ~o1	~l1 -> A l	-
2% ~o1	~eR -> Z e	
8% ~o1	~eR -> A e	
2% ~o1	\mbox{mR} -> Z m	
8% ~o1	\mbox{mR} —> A m	$d_0] + c_0 + b_0 = 0$ (11E)
11% ~l1	~11 -> 1 1	deltartho=9.11E-0
2% ~l1	~L1 -> A Z	gmuon=3.12E-10
3% ~l1	~L1 -> A A	bsgnlo=3.85E-04
8% ~eR	~l1 -> e l	bsmumu=3.13E-09
6% ~eR	~eR -> e e	
1% ~eR	~ER -> A Z	MassLimits OK
2% ~eR	~ER -> A A	
6% ~eR	\mbox{mR} -> e m	
8% ~mR	~l1 -> m l	

E-06

Example of some cross sections and widths calculation for mSUGRA point m0=107.0,mhf=600.0,a0=0.0,tb=5.0

Z partial widths b B - 3.684E-01 GeV d D - 3.703E-01 GeV u U - 2.873E-01 GeV c C - 2.873E-01 GeV s S - 3.703E-01 GeV l L - 8.378E-02 GeV nl Nl - 1.670E-01 GeV nm Nm - 1.670E-01 GeV nm Nm - 1.670E-01 GeV m M - 8.397E-02 GeV e E - 8.397E-02 GeV Total 2.436E+00 GeV

All tree-level widths. MS+SUSY All $2 \rightarrow 2$ cross-sections Cross sections at Pcm=500.0 GeV e,E->~1+,~1e,E->~1+(468),~1-(468) is 7.135E-03 pb e,E->~o1,~o2 e,E->~o1(249),~o2(468) is 1.130E-02 pb

Download

- Current version micromegas_1.3.6 can be found at
 - http:://wwwlapp.in2p3.fr/lapth/micromegas
 - For help : <u>micro.omegas@lapp.in2p3.fr</u>
- Interactive web page for mSUGRA model (includes comparison of Isajet/SoftSUSY/Spheno/Suspect)
 - http://cern.ch/kraml/comparison

 Modular system, easily extendable to other models using LanHEP+ CalcHEP

NMSSM

 MSSM with additional singlet superfield

$$-\mathcal{L}_{\text{soft}} = m_{\text{Hu}}^2 |H_u|^2 + m_{\text{Hd}}^2 |H_d|^2 + m_{\text{S}}^2 |S|^2 + (\lambda A_\lambda H_u H_d S + \frac{1}{3} \kappa A_\kappa S^3 + \text{h.c.}) - \frac{1}{2} (M_2 \lambda_2 \lambda_2 + M_1 \lambda_1 \lambda_1 + \text{h.c.}) .$$

 Higgs sector: 3 scalars, 2 pseudoscalars

• Neutralino sector: 5 neutralinos

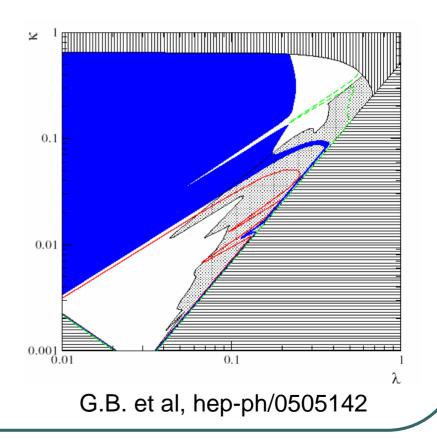
 $0 \qquad M_Z \sin\theta_W \sin\beta \quad -M_Z \sin\theta_W \cos\beta$ M_1 0 0 $M_2 = -M_Z \cos\theta_W \sin\beta = M_Z \cos\theta_W \cos\beta$ 0 $\begin{array}{ll} M_Z \sin \theta_W \sin \beta & -M_Z \cos \theta_W \sin \beta & 0 \\ -M_Z \sin \theta_W \cos \beta & M_Z \cos \theta_W \cos \beta & -\mu \end{array}$ $-\lambda v \cos\beta$ $-\mu$ 0 $-\lambda v \sin\beta$ $-\lambda v \sin\beta$ $-\lambda v \cos\beta$ 0 2ν 0

Implementation into micrOMEGAs

- LanHEP: from the Lagrangian writes all masses and couplings in CompHEP/CalcHEP notation
- Higgs sector: write effective potential

$$V_{\rm rad} = \lambda_1 (H_u H_u^*)^2 / 2 + \lambda_2 (H_d H_d^*)^2 / 2 + \lambda_3 (H_u H_u^*) (H_d H_d^*)$$

- + $\lambda_4(\epsilon H_u H_d)(\epsilon H_u^* H_d^*) + \lambda_5((\epsilon H_u H_d)^2 + (\epsilon H_u^* H_d^*)^2)/2$
- + $\lambda_1^s (H_u H_u^*) SS^* + \lambda_2^s (H_d H_d^*) SS^* + \lambda_s^s (SS^*)^2/2$
- + $\lambda_5^s((\epsilon H_u H_d)S^2 + (\epsilon H_u^* H_d^*)S^{*2})/2 + \lambda_p^s(S^4 + S^{*4}).$
- New couplings must be calculated by an external program
 - We use NMHDECAY to calculate Higgs masses and mixings,
 U. Ellwanger, J. Gunion, C. Hugonie, JHEP02(2005)066
 - From this extract λ 's and calculate Higgs self-couplings


micromegas_nmssm

- CalcHEP calculates all necessary cross-sections
- Computation of relic density within micrOMEGAs:
 - Input parameters : SLHA_nmssm
 - Masses/mixings of Higgses: from NMHDECAY
 - Other susy masses: calculated at tree-level from the soft terms
 - As in MSSM: solve evolution equation, include all coannihilation channels, improved width for Higgs (e.g. Hff), careful treatment of poles
 - Also calculates all 2-2 cross-sections and 1->2 decays (tree-level)
 - LEP constraints given by NMHDECAY
 - Other routines such as b-sgamma not implemented yet (will do through NMHDECAY)
- Available on NMHDECAY web page :
 - http://www.th.u-psud.fr/NMHDECAY/
- Soon on <u>http://wwwlapp.in2p3.fr/lapth/micromegas</u>
 - GB, Boudjema, Hugonie, Pukhov, Semenov, hep-ph/0505142

Some results

- As in the MSSM, WMAP favours models with LSP mixed bino/Higgsino
 - Main annihilation ->WW,tt
- What's different:
- Annihilation into light Higgses (scalar or pseudoscalar)
- More resonances
 - Even at low tanβ
 - Can be h2,a1 ...
- Singlino LSP: can be compatible with WMAP
 - Annihilation near resonance, annihilation into Higgses

 μ =220, M₂=320, tan β =5, A_{λ}=500, A_{κ}=0

New developments: micromegas_2.0

- A generic program to calculate the relic density of DM in any model
- Assume some "R-parity " and particles either odd/even under this parity
- Need to specify all couplings in CalcHEP (CompHEP) notation
- Must provide masses of all particles
- Code then automatically looks for "LSP" and for resonances
- Computes all annihilation and coannihilation cross-sections
- Solves the evolution equation and obtains the relic density
- Other constraints must be provided by user in fortran or C routine
- A working example: micromegas_nmssm
- Under development:
 - UED (Csaba Balazs, et al)
 - Warped Xtra-Dim (G. Servant + micromegas)

New developments: Indirect detection

- Pair of dark matter particles annihilate and their annihilation products are detected in space – possibly signal for dark matter
 - Positrons from neutralino annihilation in the galactic halo
 - Photons from neutralino annihilation in center of galaxy
 - Neutrinos from neutralino in sun

Module being finalised: photons (with S. Rosier-Lees, P. Brun) $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to \gamma \gamma$

- "hard" photon line from loop processes
 - F. Boudjema, A. Semenov, D. Temes, hep-ph/0507127
 - Agrees with PLATON, DarkSUSY (except for γZ)
- Continuum from pair of neutalinos into b,t,W,Z,h...
 - Use PYTHIA for photon spectrum

Annihilation into photons: comparison

	Sugra	nSugra	higgsino-1	higgsino-2	wino-1	wino-2				
M_1	0.2	0.1	0.5	20.	0.5	20.0				
M_2	0.4	0.4	1.0	40.	0.2	4.0				
μ	1.0	1.0	0.2	4.0	1.0	40.0				
M_A	1.0	1.0	1.0	10.	1.0	10.0				
$m_{ ilde{f}}$	0.8	0.8	0.8	10.	0.8	10.0				
Ωh^2	5.31	18.8	$6.41 \ 10^{-3}$	1.59	$1.16 \ 10^{-3}$	0.46				
1.097										
			$\sigma v_{\gamma\gamma} \times 10^{27}$							
v=0	$5.82 \ 10^{-5}$	$1.58 \ 10^{-5}$	$7.01 \ 10^{-2}$	$4.71 \ 10^{-2}$	1.99	1.52				
PLATONdml	$5.82 \ 10^{-5}$	$1.58 \ 10^{-5}$	$7.01 \ 10^{-2}$	$4.72 \ 10^{-2}$	1.99	1.53				
DarkSUSY	$5.81 \ 10^{-5}$	$1.58 \ 10^{-5}$	$7.02 \ 10^{-2}$	$4.71 \ 10^{-2}$	1.99	1.52				
$\sigma v_{Z\gamma} \times 10^{27}$										
v=0,full	$2.03 \ 10^{-5}$	$2.61 \ 10^{-6}$	$2.19\ 10^{-1}$	$2.20 \ 10^{-2}$	11.7	10.1				
v=0,part	$1.94 \ 10^{-5}$	$2.50 \ 10^{-6}$	$2.61 \ 10^{-1}$	$3.29 \ 10^{-2}$	11.7	10.1				
DarkSUSY	$1.42 \ 10^{-5}$	$1.79 \ 10^{-6}$	$2.61 \ 10^{-1}$	$3.29 \ 10^{-2}$	11.7	10.1				

Outlook and conclusion

- Future plans:
 - Expand indirect detection to include positrons, antiprotons, neutrinos
 - Direct detection

- Flexible and extendable package to calculate relic density in the MSSM and its extensions
- Includes constraints on MSSM and provides tree-level crosssections and decay widths
- Current version micromegas_1.3.6 can be found at
 - http:://wwwlapp.in2p3.fr/lapth/micromegas