Scenarios for SUSY CDM and the ILC

Howard Baer Florida State University

- ★ Non-universal gaugino masses
- ★ Motivation
- ★ Mixed wino dark matter (MWDM)
- ★ Bino-wino co-annihilation (BWCA) scenario
- \bigstar Consequences for LHC and ILC

Neutralino CDM in the mSUGRA model

★ mSUGRA model parameters

• $m_0, m_{1/2}, A_0, \tan\beta, sign(\mu) (m_t)$

★ Most of p-space is excluded by WMAP: $\Omega_{\widetilde{Z}_1}h^2 = 0.113 \pm 0.009$

★ Allowed regions

- bulk region (low m_0 , $m_{1/2}$)
- stau co-ann. region $(m_{ ilde{ au}_1} \sim m_{ ilde{Z}_1})$
- HB/FP region (large $m_0 \sim 4 8$ TeV with small μ)
- A-funel $(2m_{\widetilde{Z}_1} \sim m_A \text{ at large } \tan \beta \sim 45 55)$
- *h* funnel
- \tilde{t}_1 co-ann. (at particular A_0)

Non-universal gaugino masses

★ SUGRA models where GKF transforms non-trivially (Snowmass '96)

	M_{GUT}			M_Z		
F_h	M_3	M_2	M_1	M_3	M_2	M_1
1	1	1	1	~ 6	~ 2	~ 1
24	2	-3	-1	~ 12	~ -6	~ -1
75	1	3	-5	~ 6	~ 6	~ -5
200	1	2	10	~ 6	~ 4	~ 10

- ★ Heterotic superstring models with orbifold compactification: SUSY breaking dominated by the moduli field
- ★ Extra-dimensional SUSY GUT models where SUSY breaking is communicated from the SUSY breaking brane to the visible brane via gaugino mediation (e.g. Dermisek-Mafi model)

* …

- **\star** Here we adopt a phenomenological approach of independent M_1 , M_2 , M_3 but require consistency with WMAP
 - MWDM: HB, Mustafayev, Park, Profumo JHEP0507, 046 (2005)
 - BWCA DM: HB, Krupovnickas, Park, Profumo, Tata
- \star Large/small M_3 case, see Belanger et al. NPB706, 411 (2005)
- Related work: Corsetti and Nath; Birkedal-Hansen and Nelson; Bertin, Nezri and Orloff; Bottino, Donato, Fornengo, Scopel; Belanger, Boudjema, Cottrant, Pukhov, Semenov; Mambrini, Munoz and Cerdeno; Auto, HB, Belyaev, Krupovnickas; Masiero, Profumo, Ullio

$$\Omega_{\widetilde{Z}_1}h^2$$
 vs. M_1

H. Baer, "SUSY Working Group", Snowmass, 2005

Sparticle mass spectra vs M_1

 $m_0 = 300 \text{GeV}, m_{1/2} = 300 \text{GeV}, \tan \beta = 10, A_0 = 0, \mu > 0, m_t = 178 \text{GeV}$

H. Baer, "SUSY Working Group", Snowmass, 2005

WMAP allowed regions for various M_1/M_2

 $\tan\beta=10, A_0=0, \mu>0, m_t=178(\text{GeV})$

H. Baer, "SUSY Working Group", Snowmass, 2005

MWDM: Any point in m_0 - $m_{1/2}$ plane can be WMAP allowed

H. Baer, "SUSY Working Group", Snowmass, 2005

Neutralino DM search for MWDM: enhanced!

 $m_0=300 \text{ GeV}, m_{1/2}=300 \text{ GeV}, \tan\beta=10, A_0=0, \mu>0, m_t=178 \text{ GeV}$

H. Baer, "SUSY Working Group", Snowmass, 2005

MWDM: small $\widetilde{Z}_2 - \widetilde{Z}_1$ mass gap

mSUGRA: tan β =10, A_0 =0, μ >0, m_t =178 GeV

NUGM: $M_1 \neq m_{1/2}$, $tan\beta=10$, $A_0=0$, $\mu > 0$, $m_t=178$ GeV

H. Baer, "SUSY Working Group", Snowmass, 2005

$m(\ell^+\ell^-)$: mass gap observable at LHC for MWDM

H. Baer, "SUSY Working Group", Snowmass, 2005

e^- beam polarization useful tool for MWDM at ILC

H. Baer, "SUSY Working Group", Snowmass, 2005

Bino-wino co-annihilation (BWCA) scenario

- If $M_1/M_2 < 0$, then no mixing between bino-wino
- Can only reduce relic density via bino-wino co-annihilation when $M_1\simeq -M_2$ at $Q=M_{weak}$

2005/07/26 09.06

H. Baer, "SUSY Working Group", Snowmass, 2005

Neutralino DM detection rates remain low

 $m_0=300 \text{ GeV}, m_{1/2}=300 \text{ GeV}, \tan\beta=10, A_0=0, \mu>0, m_t=178 \text{ GeV}$

H. Baer, "SUSY Working Group", Snowmass, 2005

In BWCA at $m_0 \stackrel{<}{\sim} 500$ GeV, $BF(\widetilde{Z}_2 \rightarrow \widetilde{Z}_1 \gamma)$ enhanced!

Haber+Wyler; Ambrosanio+Mele; Baer+Krupovnickas

H. Baer, "SUSY Working Group", Snowmass, 2005

 $dN/dE (GeV^{-1})$

H. Baer, "SUSY Working Group", Snowmass, 2005

$m(\ell^+\ell^-)$ mass gap should be observable in BWCA DM

H. Baer, "SUSY Working Group", Snowmass, 2005

H. Baer, "SUSY Working Group", Snowmass, 2005

Conclusions

- ★ Non-universal gaugino masses possible in many models
- **\star** Any point in m_0 - $m_{1/2}$ plane WMAP allowed if MWDM or BWCA DM
- ★ MWDM: enhanced direct/indirect DM detection rates
- ★ BWCA DM: non-enhanced direct/indirect DM detection rates
- \star MWDM and BWCA DM: small \widetilde{Z}_2 - \widetilde{Z}_1 mass gap
- $\star~e^-$ beam polarization useful for distinguishing MWDM and BWCA DM from MHDM, mSUGRA
- \star Enhanced radiative \widetilde{Z}_2 decay in BWCA (MWDM) gives isolated photons