Enhancement of the "CP-odd" Higgs Boson Production in the MSSM with Explicit CP Violation

Daisuke Nomura (Michigan State U.) MICHIGAN STATE UNIVERSITY

- I. Introduction
- II. $\sigma(gg \rightarrow A^0)$ in the CP violating MSSM
- III. EDM constraints, connection to ILC and $\sigma(gg o A)$ IV. Summary

In collab. with Q.-H. Cao, K. Tobe and C.-P. Yuan.

Higgs Sector in the MSSM — Introduction

The MSSM has 2 Higgs doublets:

$$H_1 = \begin{pmatrix} H_1^0 \\ H_1^- \end{pmatrix}, \qquad H_2 = \begin{pmatrix} H_2^+ \\ H_2^0 \end{pmatrix}$$

8 real d.o.f., 3 of which are eaten by W^{\pm} and Z.

After the EW symmetry breaking, we are left with 5 d.o.f.,

If CP is not a good symmetry, h^0, H^0 and A^0 can mix with each other.

In this talk I concentrate on $gg \rightarrow A^0$.

Motivation for the CP violating Higgs Sectorconserving case:CP violating case:

Broader parameter region to be explored for the **CP violating** case Many works already exist (Carena, Choi, Demir, Drees, Ellis, Gunion, Haber, Hagiwara, Heinemeyer, Hollik, Kalinowski, Kane, Lee, Pilaftsis, Wagner, Wang, Weiglein, Zerwas,)

CP violation and $gg ightarrow A^0$

In this talk we concentrate on $gg \rightarrow A^0$. Why $gg \rightarrow A^0$?

CP conserving contrib.: $A^0 G^{\mu
u} \widetilde{G}_{\mu\nu}$ **CP violating** contrib.: $A^0 G^{\mu
u} G_{\mu\nu}$

(\bigstar Sources of CP violation: the A term and the LR mixing of stop) The total cross section is the sum of the squares (no interference terms).

$$\sigma(gg
ightarrow A^0) \propto \left(\left| \mathcal{M}(\mathrm{top})
ight|^2 + \left| \mathcal{M}(\mathrm{stop})
ight|^2
ight)$$

We **ALWAYS** gain (if we neglect the CP-violating mixing among Higgs bosons).

(cf For $gg \to h^0$, both top and stop diagrams contribute to $h^0 G^{\mu\nu} G_{\mu\nu}$. The interference is typically destructive (Choi-Hagiwara-Lee).)

Numerical Results for $\sigma(gg o A^0; ilde{t} ext{-loop})/\sigma(gg o A^0; t ext{ or } b ext{-loop})$

MSSM stop mixing: maximal A_t : pure imaginary μ : real and positive $\tan \beta = 5$ $m_{\tilde{t}_1} = 120 \text{ GeV}$ $m_A = 250 \text{ GeV}$

An $\mathcal{O}(1000)$ enhancement possible, if we neglect (indirect) EDM constraints.

Why such a huge enhancement?

For a pure imaginary A_t , a real μ and maximally mixed stops,

$$egin{aligned} &\sigma(gg o A; ilde{t} ext{-loop}) = c rac{m_t^2}{m_A^2} rac{\mu^2 |A_t|^2}{m_A^2 (|A_t|^2 + \mu^2 \cot^2eta)} |m_{ ilde{t}_1}^2 C_0(m_{ ilde{t}_1}^2, m_A^2) \ &- m_{ ilde{t}_2}^2 C_0(m_{ ilde{t}_2}^2, m_A^2) |^2, \end{aligned}$$
 $&\sigma(gg o A; ext{t-loop}) = c rac{1}{ an^2eta} |m_t^2 C_0(m_t^2, m_A^2)|^2. \end{aligned}$

For $|A_t| \sim 1$ TeV, $\mu \sim 2$ TeV, $m_A = 250$ GeV and $\tan \beta = 5$ the ratio of the red parts is $\mathcal{O}(1000)$. (Large A_t and/or μ and the $\tan \beta$ dependence.)

The behavior of the C_0 function is also important. If $m_A < 2m_{\tilde{t}_1}$, then $|\cdots| = |(\text{real}) - (\text{real})|$, where a GIM-like cancellation happens. If $2m_{\tilde{t}_1} < m_A < 2m_{\tilde{t}_2}$, then $|\cdots| = |(\text{complex}) - (\text{real})|$, where the cancellation tends to be less severe.

Constraints from EDM

Potentially strong constraint comes from electron/neutron EDM from the Barr-Zee diagrams, (Chang-Keung-Pilaftsis, . . .)

If this exceeds the exp. bound, to make the parameter region viable, we need a cancellation from other contributions, e.g.

by fine-tuning the phase of gaugino mass parameters, etc.

Constraints from EDM, Numerical Results

Typically, the 2-loop contribution exceeds the exp. bound by a factor of $\mathcal{O}(10)$ in the parameter region shown. To make this parameter region viable, we need a cancellation from other contrib., e.g. 1-loop contributions.

Another Numerical Result for $\sigma(gg \rightarrow A^0; \tilde{t}$ -loop)/ $\sigma(gg \rightarrow A^0; t \text{ or } b$ -loop) in a different, EDM-safe parameter region

MSSM

stop mixing: maximal A_t : pure imaginary μ : real and positive $\tan \beta = 5$ $m_{\tilde{t}_1} = 390 \text{GeV}$ (heavier than the prev. case) $m_A = 800 \text{GeV}$ (heavier than the prev. case)

Most of the region in the fig. is safe from EDM.

An $\mathcal{O}(10)$ enhancement possible

Connection to ILC

How do we distinguish which operator is important, CP conserving operator $A^0 G^{\mu\nu} \tilde{G}_{\mu\nu}$ or CP violating operator $A^0 G^{\mu\nu} G_{\mu\nu}$?

Polarized photon-photon collision at the **ILC** may be useful since the dependence on the polarization vectors is different,

Summary

We calculated $\sigma(gg \rightarrow A^0)$ in the MSSM with CP violating A_t term.

✓ We found the parameter region in which the cross section is enhanced by a factor of ~ 1000 from CP-violating stop-loop diagrams. However, this parameter region suffers from too large EDMs from 2-loop diagrams (Barr-Zee diagrams).

► To make the parameter region viable, we have to cancel this contribution by other contributions, e.g. 1-loop diagrams.

 \checkmark We also found another parameter region which is safe from the 2-loop contributions to EDM. In this region the cross section is enhanced by a factor of $\mathcal{O}(10)$.

 \checkmark To test this scenario, **polarized photon-photon collision** at the **ILC** may be useful.

 \star Connections to the EW baryogenesis?

Backup Slides

Constraint from Charge/Color Breaking Minimum

For the potential

$$V = \sum_{\phi} \left| \frac{\partial W}{\partial \phi} \right|^2 + A(W + W^*) + m_{\text{SUSY}}^2 \sum_{\phi} |\phi|^2,$$

the tree-level condition that the charge/color breaking minimum should not happen is $|A| \leq 3m_{\rm SUSY}$ (See, e.g. a review by Nilles). This is actually satisfied for our parameters. (We assumed $m_{\tilde{t}_L}^2 = m_{\tilde{t}_R}^2$ to maximize the mixing and fix $m_{\tilde{t}_1}$ as

$$m_{\tilde{t}_1}^2 = m_{\tilde{t}_{LL}}^2 - |m_{\tilde{t}_{LR}}^2| = \mathcal{O}((100 \text{GeV})^2).$$

For $|A_t| \sim |\mu| \sim 1$ TeV, the soft SUSY breaking mass m_{SUSY} is ~ 0.4 TeV.)

Hadronic-level cross section at the LHC

The cross section can be a few times 100 pb.