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Damping ring is the one of key issues in the International Linear Collider(ILC). Especially, the acceptance of the

damping ring is important for the delivery of the small emittance beams and sufficient bunch charges to make high

luminosity operations. Dynamic aperture on the acceptance issues is studied for several lattices proposed for the ILC

damping rings.

1. Estimation of Dynamic Aperture

Injection efficiency and Touschek lifetime depend on the acceptance of the accelerator ring for the injected beam or
the stored beam. The acceptance should be determined by the dynamic aperture rather than the physical aperture
in general. The dynamic aperture is characterized by the lattice design, especially, the sextupole magnets to correct
the chromatic effects.

The dynamic aperture is evaluated by a stability for one transverse damping time. For instance, the transverse
damping time of the TESLA Dogbone ring is 28 msec which corresponds to 500 turns. It is difficult to apply
an analytic approach or a perturbation method because the sextupole magnets and the wiggler section cause the
strong nonlinearity. Therefore, we estimate the dynamic aperture by tracking simulations numerically. In order to
investigate dynamic aperture, we perform a particle-tracking simulation by using SAD[1]. SAD is an integrated code
for the optics design, particle tracking, machine tuning, etc., and has been used for years at several machines such
as KEKB and KEK–ATF.

Six canonical variables, x, px, y, py, z, and δ are used to describe the motion of a particle, where px and py are
transverse canonical momenta which are normalized by the design momentum, p0, and δ is the relative momentum
deviation from p0. The injected beam is a round shape in the transverse direction and coherent oscillations due to
injection kickers are negligible as an assumption. Thus, we set the initial conditions as y = x, px0 = 0, py0 = 0, and
z = 0 to evaluate the acceptance of the injected beam in these sections. We also survey a momentum aperture within
±3 % to see a momentum aperture. As a criterion of the stability, the maximum amplitude of the particle orbit must
be within 10 cm in the x and y coordinate during one damping time. Linear chromaticity is adjusted to be nearly
equal 0 with optimizing the strength of the sextupole magnets for each lattice. Synchrotron radiation damping is
turned on and but quantum excitation is turned off to avoid statistical fluctuations during tracking simulations.

Figure 1(a) shows the dynamic aperture of the TESLA Dogbone-S1 obtained from the tracking simulation for
the ideal lattice and the lattice includes the nonlinear wigglers described in the next section. No machine error is
included in the lattice. The working point is νx/νy = 72.32/47.24. The transverse acceptance for the initial condition
is expressed by Jy0/Jx0 = 1, where 2Jx,y is the Courant-Snyder invariant and γ is the Lorentz factor. Momentum
acceptance is expressed by δ0 which is the initial momentum deviation from the design momentum. The requirement
of the acceptance is assumed to be Ax +Ay = 0.09 m in the transverse plane and | δ0,max |= 0.5 % for the momentum
aperture[2], where Ax,y implies the normalized Courant-Snyder invariant, γ2Jx,y.

1The lattice is modified to be a S-shape geometry and a round coupling bumps from the original TESLA Dogbone.
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Figure 1: TESLA Dogbone-S lattice. (a) Comparison of the dynamic aperture between the ideal lattice(blue) and the lattice

including nonlinear wigglers(red). The initial amplitude is set to be Jy0/Jx0 = 1. (b) Amplitude dependence of the vertical

tune. Solid circle indicates wigglers without nonlinearity and open circle indicates nonlinear wigglers with sextupole magnets

turned on. Solid square indicates wigglers without nonlinearity and open square indicates nonlinear wigglers with sextupole

magnets turned off.

2. Wiggler Fringe Field

A long wiggler section is necessary for the case of dogbone lattice compared with conventional designs to obtain
the enough damping time while keeping the equilibrium emittance small. One of the complications implies nonlinear
effects of the wiggler magnets[3].

The total Hamiltonian in the vertical plane of the ring into which wigglers are inserted can be expressed by[4]

H = H0 +
Lw

4ρ2
w

y2 +
Lw

12ρ2
w

k2y4, (1)

where H0 is the Hamiltonian without the wigglers, Lw is the length of the wiggler section, ρw is the bending radius
of the wiggler, k = 2π/λw, λw is the period length of the wiggler. Therefore, the associated betatron tune shift due
to the wigglers is obtained from

∆νy =
β̄y

4π

(
Lw

2ρ2
w

+
Lw

3ρ2
w

k2y2

)
, (2)

where β̄y is the averaged vertical beta function in the wiggler section.
Alternatively, the Hamiltonian is parameterized by using an action variable,

H = 2π
(
νx0Jx + νy0Jy + νz0Jz + cxxJ2

x + cyyJ2
y

+czzJ
2
z + cxyJxJy + cyzJyJz + czxJzJx + · · ·) . (3)

In the case of Jx = Jz = 0, the vertical betatron tune can be approximately written up to the second term as

νy =
1
2π

∂H

∂Jy
= νy0 + 2cyyJy. (4)

By comparing Eq. (2) with Eq. (4), the amplitude dependence of the vertical betatron tune due to the wigglers can
be calculated by

cyy =
β̄2

yLwk2

12πρ2
w

. (5)
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A particle-tracking simulation by using SAD is performed to investigate the effect of the nonlinear wigglers. In SAD,
the wiggler bending field is approximated by trapezoids, and the Hamiltonian up to O(y4) are included in the model.
The region of the fringe field is parameterized by

F1 = 6
∫ +∞

−∞

{
By(s)
B0

−
(

By(s)
B0

)2
}

ds, (6)

where B0 is the peak field strength and By(s) is the field component of the y-direction for the wiggler magnet.
Therefore, the primary nonlinear effect of the fringe field of the wiggler magnets are included in the tracking by
SAD. Figure 2 illustrates the vertical field along the wiggler axis[5] for the TESLA Dogbone damping ring and the
approximated filed used in the tracking simulations. Table I shows the nonlinear coefficient, cyy, estimated by the
tracking for the TESLA Dogbone-S lattice without and with the nonlinear wigglers. Figure 1(b) shows amplitude
dependence of the vertical tune. The nonlinear coefficient, cyy, can be obtained by fitting the results from the
tracking simulations shown in Table I. The difference between with and without the nonlinearity is +2123 ∼ +2203.
Using Eq. (5), the nonlinear coefficient due to the wigglers is calculated to be +2066 analytically, using β̄y = 8.7 m,
Lw = 417 m, ρw = 10 m, and λw = 0.4 m. Consequently, the tracking simulation well reproduces the octupole-like
component of the wigglers. Table I also shows the nonlinear coefficient with sextupole magnets turned on and off.
The contribution of the nonlinear effects due to sextupole magnets is about −1 × 104 obtained from the sextupole
magnets turned on and off. The dynamic apertures without and with the nonlinear wigglers for Jy0/Jx0 = 1 are
shown in Fig. 1(a). There is no significant difference between without and with the nonlinear wigglers.

Table I: Nonlinear coefficient cyy of the damping ring estimated by the tracking simulations.

sextupoles w/o nonlinear wig. w/ nonlinear wig. deviation

ON −2361 −238 +2123

OFF +8858 +11061 +2203
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Figure 2: Wiggler field for a magnet of TESLA Dogbone damping ring. Blue line indicates a transverse vertical field along

the wiggler axis and red line indicates an approximated field by a trapezoid in a tacking simulation.

3. Tune Survey of Dynamic Aperture

Figure 3 and 4 show tune surveys of the dynamic aperture described by the initial amplitude, γ2Jx0 + γ2Jy0, on
the tune space. The results from the ideal lattice and the lattice includes multipole errors are shown in the figure.
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The multipole errors are assumed to be those based on the measurements in PEP-II and SPEAR[6]. The initial
condition of the transverse acceptance is also restricted by Jy0/Jx0 = 1. The aperture is defined by the smallest
acceptance within the momentum range of ±0.5 %. The lighter color indicates the larger dynamic aperture and the
red contour shows required acceptance that corresponds to 0.09 m. The several resonances are found in the tune
space. Synchro-beta resonances such as νx − νs = 2N , 3νx − νs = 2N , νx + νy + νs = 2N are found in the TESLA
Dogbone-S and the MCH lattice significantly. The total RF voltage is modified to be 115 MV from 54 MV to make
the bunch length 7 mm in MCH lattice. However, the dynamic aperture can be kept sufficient for the injected beam
for the ideal lattice and the lattice with multipole errors although dynamic apertures are decreased by 15∼20 %.
The OCS lattice has a enough dynamic aperture in the large region of the tune space.

4. Results of Dynamic Aperture

The transverse aperture as a function of momentum deviation is shown in Fig. 5. Blue line indicates the ideal
lattice and red line indicates the lattice that includes multipole errors. The betatron tunes are chosen so as to keep a
large aperture from tune surveys shown in Fig. 3 and 4. Table II shows the results of the dynamic aperture for each
lattice and the betatron tunes used in the tracking simulations. The dynamic aperture(DA) is shown by the area of
acceptance in the Jx0 − δ0 plane which is in the arbitrary unit. The effects of multipole errors are not significant in
the dynamic aperture for the injected beams.

Figure 6 shows the dynamic aperture for Jy0/Jx0 = εy/εx = 0.002 to evaluate Touschek lifetime. The emittance
ratio of 0.002 is the design value including emittance tunings. The dynamic aperture is represented in the 2Jx0/εx−
2Jz0/εz plane. Both the ideal lattice and the lattice includes multipole errors are shown in the figure. Black line
indicates the region of the dynamic aperture, 0 ≤ (Jx/Jx,max) + (Jz/Jz,max) ≤ 1, to calculate probabilities of the
particles lost at each component in the whole ring when the bunch is assumed to be the Gaussian distribution.
Touschek lifetime for each lattice includes multipole errors is summarized in Table III. Touschek lifetime estimated
by the above method is the worst case and conservative, however, the lifetime is sufficient to perform optics corrections
and beam-based alignments. In order to make Touschek lifetime long, there are several ways to increase the emittance
ratio with local orbit bumps at sextupole magnets or reduce number of particles per bunch.

Table II: Comparison of dynamic aperture.

Dogbone-S MCH OCS PPA

νx 72.32 75.70 50.84 47.81

νy 47.24 76.60 40.80 47.68

Jy0/Jx0 1

DA(score) ideal lattice 357 296 434 319

DA(score) multipole error 344 255 428 311

Table III: Estimation of Touschek lifetime.

Dogbone-S MCH OCS PPA

νx 72.32 75.70 50.84 47.81

νy 47.24 76.60 40.80 47.68

2Jx0/εx 118 179 264 89

2Jz0/εz 20 14 16 14

εy/εx 0.002

Number of particles/bunch 2× 1010

Touschek lifetime (min) 1140 370 290 50
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Figure 3: Tune survey of the dynamic aperture represented by the smallest γ2Jx0 + γ2Jy0 for Jy0/Jx0 = 1 within | δ0 |= 0.5

%. White region shows the dynamic aperture larger than 0.4 m. Red contour indicates the requirement of the acceptance.

Left: ideal lattice, (a) TESLA Dogbone-S, (c) MCH with Vc = 115MV , (e) OCS. Right: lattice includes multipole errors, (b)

TESLA Dogbone-S, (d) MCH, (f) OCS.
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Figure 4: Same as Fig. 3. PPA, (a) ideal lattice, (b) lattice includes multipole errors.

5. Conclusion

The dynamic apertures are compared between the TESLA Dogbone-S lattice without and with the nonlinear effect
of the fringe field in the wiggler magnets. The difference between them is not found significantly. The dynamic
aperture obtained from the particle-tracking simulations satisfies the requirement of Ax + Ay = 0.09 m in the
transverse plane and | δmax |= 0.5 % for the momentum aperture in the TESLA Dogbone-S, MCH, and OCS lattice
when an appropriate working point is chosen. The acceptance requirement is still satisfied in the lattices including
the multipole errors. The issue of the dynamic aperture does not restrict the choice of the circumference among 17
km, 16 km, 6 km, and 3 km .

6. Future Plans

Dynamic aperture should be studied the lattice includes the machine errors such as field gradient errors and the
misalignments of the magnets cause the β-function beat, dispersion, and x-y coupling, closed orbit distortions. It is
also necessary for the consideration of the nonlinear effect due to wigglers to fix the wiggler model and specifications
first.
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Figure 5: Dynamic aperture for Jy0/Jx0 = 1. (a) TESLA Dogbone-S, (b) MCH with Vc = 115 MV, (c) OCS, (d) PPA. Blue

line indicates the ideal lattice and red line indicates the lattice with multipole errors. The requirement of aperture is shown

by a rectangle.
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Figure 6: Dynamic aperture for Jy0/Jx0 = εy/εx = 0.002. (a) TESLA Dogbone-S, (b) MCH with Vc = 115 MV, (c) OCS, (d)

PPA. Blue line indicates the ideal lattice and red line indicates the lattice with multipole errors.
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