
the highest densities of cold matter in the universe. Combining laboratory
experiments with observations of neutron stars will constrain the equation
of state of relatively cold and dense matter. In addition, neutron stars are
also laboratories for testing general relativity theory.

1. From Theory to Discovery

Soon after the discovery of neutrons themselves by Chadwick in 1932, neutron stars
were first proposed by Landau who suggested that in analogy to the support of white dwarfs
by electron degeneracy pressure, neutron stars could be supported by neutron degeneracy
pressure. Baade and Zwicky1 in 1934 firstsuggested neutron stars as being the remnants
of supernovae. Tolman2 in 1939 produced a major study of theirtheoretical structure,
employing the relativistic equations of stellar structure following from Einstein’s equations
of general relativity. This work demonstrated, among other interesting ideas, that neutron
stars could not be of arbitrarily large mass: general relativity introduces the concept of a
neutron star maximum mass. Interestingly, the magnitude of the neutron star maximum
mass is of the same order as the Chandrasekhar mass, which is the limiting mass for a
white dwarf that exists in Newtonian gravity. Additional theoretical work followed, in
which it was realized that neutron stars were likely to be rapidly rotating and to have
intense magnetic fields. Pacini3 predicted that a rotating magnetized neutron starwould
emit radio waves. But it was not until the 1967 Bell and Hewish4 discovery of radio
pulsars that the existence of neutron stars was put on firm ground. Gold5 quickly made
the connection between theextremely regular observed pulsations and a model of a highly
magnetized, rapidly rotating and extremely compact configuration.

The periods of pulsars range from seconds down to milliseconds. The rotation periods
are obsered to be extremely stable, with P/Ṗ ranging from thousands to millions of years.
The periods are observed to be generally increasing. These three facts virtually guarantee
that one is dealing with the rotation of a massive object. The short periods imply that
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the size of the pulsar is small. The distance cP is about 3000 km for P = 0.01 s. Unless
relativistic beaming with γ ∼ 100 is occuring, a compact star is required. Vibrations of a
star are ruled out because, generally, as vibrations decay their period decreases. Further-
more, the characteristic vibrational frequency is 2π(Gρ)−1/2, only a few milliseconds, and
is too short. Finally, pulsing due to two orbiting objects is ruled out by the prediction
of general relativity that a close compact binary will emit gravitational radiation, which
again decreases its period as the orbit decays.

A rotating rigid sphere with period P will begin to shed mass from its equator when
the orbital period at the star’s surface equals P . Thus the limiting period is defined by√

GM

R3
=

2π

Plim
, Plim = 0.55

(
M�
M

)1/2(
R

10 km

)3/2

ms.

For a white dwarf, for example, the limiting rotational period would be of order 15 s. Only
a neutron star can be more compact without forming a black hole.

Although the details of the generating mechanism are vague, it is believed that the
pulsations of a neutron star can be understood in terms of the energetics of a rotating
dipole. If the magnetic and rotation axes are not perfectly aligned, then a beam of radiation
emanating from the magnetic axes will pierce the surrounding space like a lighthouse
beacon. The torque exerted by the beam will slowly spin down the pulsar.

The magnetic moment magnitude of a sphere with a dipole field of strength B is

|m| = BR3/2.

If the magnetic field is not aligned with the rotation axis, the magnetic field will change
with time and therefore energy will be radiated. The emission rate is

Ė = − 2
3c3

|m̈|2 = −B2R6Ω4

6c3
sin2 α, (1.1)

where Ω = 2π/P and α is the misalignment angle. Ultimately, the source of the emitted
energy is the rotational energy,

E =
1
2
IΩ2, Ė = IΩΩ̇ (1.2)

where I is the moment of inertia of the pulsar. If the original spin frequency is Ωi and the
present frequency is Ω0, one finds for the present age of the pulsar

t =
P

2Ṗ

[
1 −

(
Ω0

Ωi

)2
]−1/2

� P

2Ṗ

where we assumed Ωi >> Ω0 is the last step. We define T = 2P/Ṗ as the characteristic
age of the pulsar. In a few cases in which the age of the pulsar can be independently
determined by direct observation (such as for the Crab pulsar) or inferred from kinematics,
the characteristic age is only accurate to factors of 3 or so. Eliminating Ė from Eq. (1.1)
by using Eq. (1.2), one finds that the orthogonal component of the magnetic field is

B sinα = 3 × 1019

√
PṖ

I

1045 g cm2
G. (1.3)
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Figure 1.1: Period vs. period derivative for pulsars. Lines of constant
characteristic age (red) and magnetic field strength (violet) are displayed.
Generally, pulsars are born in the upper left part of the diagram, and
evolve to longer periods and smaller period derivatives. It is not known
on what timescale magnetic fields of pulsars decay. The lower right region
represents a transition to pulsar death, when the emitted energy is too
small to generate significant electron-positron pairs. The pulsars in the
lower left corner are re-born, having been spun-up by accretion in binaries.

The actual emission is believed to be due to curvature radiation from electrons trapped
in the magnetic field. Since the potential drop is of order 1015−16 V, electrons will have
energies of about 1012 eV, and the photons produced will have energies many times mec

2.
Thus additional electron-positron pairs will be produced and the resulting pair-cascade
shorts out the electric field propelling the charges into space. The high density of electrons
makes maser activity possible, which ultimately results in radio waves.

One major shortcoming of the magnetic dipole model concerns the braking index

n = −ΩΩ̈
Ω̇2

, (1.4)

which implies a power-law deceleration with Ω̇ ∝ −Ωn. The dipole model predicts this to
be 3, but observations of most pulsars yield a value significantly less than 3.
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Shortly after the first pulsar was discovered, a pulsar was found to exist at the center
of the Crab nebula, the expanding gaseous remnant of a supernova known to have been
visible in 1054. Fig. 1.2 shows a stone painting of the supernova with the Moon. Comparing
the observed expansion of the ejecta with their angular distances from the center of the
nebula confirms the time of the explosion. The Crab pulsar strengthened the connection
between neutron stars and some types of supernovae, those that are collectively known as
gravitational collapse supernovae.

Figure 1.2: Anasazi rock painting showing SN 1054 and a crescent moon.

In 1975, Hulse and Taylor6 discovered a pulsar which wasorbiting another star. Al-
though this star has never been directly observed, its presence is deduced because of an
additional periodicity imposed on the pulse stream. A straightforward application of Ke-
pler’s Law The Doppler shift of the pulses, together with the orbital period, revealed that
the combined masses of the two stars was about 2.8 M�. The fact that no tidal distortions
were apparently affecting the orbital motion, and the momentus discovery that the orbit
was slowly shrinking, presumably due to the predicted emission of gravitational radiation,
allowed the measurements of the individual masses in this system. The invisible compan-
ion’s mass turned out to be nearly equal to the pulsar’s mass, about 1.4 M�. Although in
principle, it could be a normal star or even a white dwarf, these possibilities are ruled out
by its very invisibility.

Finally, in 1987, the first supernova observed that year, in the close-by irregular galaxy
known as the Large Magellanic Cloud, produced a brief neutrino pulse observed by at least
two neutrino observatories, the IMB detector in the Morton Salt Mine near Cleveland, and
the Kamiokande detector in the Japanese Alps. Models of supernovae predict that the af-
termath of a gravitational collapse supernova will involve the formation of a proto-neutron
star. Such a star is not only hot, with temperatures of nearly 1011 K, but is also lepton rich
in comparison with a cold neutron star. The high concentration of leptons, which is the
sum of the electron and neutrino concentrations, is mandated by the fact that neutrinos
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are trapped within the proto-neutron star at least for many seconds after its formation.
Neutrinos are formed during gravitational collapse due to electron capture reactions in-
duced by the increasing electron chemical potential. The duration of the neutrino burst,
the average energy of the neutrinos, and the total number of neutrinos observed were all
in accord with theoretical predictions7.

A massive amount of energy is released in a gravitational collapse supernova. Com-
pared to the binding energy of the massive star that forms its progenitor, the binding
energy of a neutron star is huge, about GM2/R ∼ 3 × 1053 ergs for M = 1.4 M� and ra-
dius R = 15 km. The weak interaction cross section for neutrino scattering and absorption
is σ0 ∼ 4× 10−44(Eν/MeV)2 cm2, where Eν is the neutrino energy. We estimate the mean
neutrino energy as the Fermi energy of degenerate neutrinos

Eν = h̄c
(
6π2ρN0Yν

)1/3 � 103 ρ
1/3
14 Y

1/3
ν,0.04 MeV, (1.5)

where Yν,0.04 = Yν/0.04 is the concentration of neutrinos in dense proto-neutron star matter
scaled to 0.04, and ρ14 is the density scaled to 1014 g cm−3. The typical neutrino mean
free path is then about

λ � 1
ρN0σ0

= 39.3 ρ
−5/3
14 Y

−2/3
ν,0.04 cm. (1.6)

Compared to the core size of about

R �
(

15M

8πρ

)1/3

� 16.8
(

M1M�
ρ14

)1/3

km,

this is very small (M1M� is the mass in units of solar masses). Diffusion of the neutrinos
out of the core takes a time

tdiff � 3R2

cλ
= 7.2 ρ14

(
M1M�Yν,0.04

)1/3 s.

As the neutrinos diffuse out of the core, they both lose energy and encounter matter of
lower density. Eventually, they reach a surface of last-scattering, or neutrinosphere, and
escape. The condition on optical depth

τ =
∫ R

R−∆R

dr

λ
� 1,

leads to an estimate for the depth ∆R under the surface where the neutrinosphere lies.
One finds to order unity that ∆R � √

λ0R where λ0 is the central value of the mean free
path. One can also see that the density at the neutrinosphere is approximately

ρ (R − ∆R) � 2ρ0
∆R

R
� 2ρ0

√
λ0

R
� 0.01 ρ

1/3
14 Y

−1/3
ν,0.04M

−1/6
1M� . (1.7)

Although neutrinos at the neutrinosphere are not degenerate, using the degenerate ap-
proximation Eq. (1.5) allows us to estimate their mean escaping energy, which is

Eν,esc � 22 ρ
1/9
14 Y

2/9
ν,0.04M

−1/18
1M� MeV. (1.8)
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Thus, although the timescale for diffusion is proportional to the assumed central density,
the energies of the escaping neutrinos are very insensitive to assumptions about the central
density and mass of the proto-neutron star (and by inference to the details of the neutrino
opacity). It is quite remarkable that the observations of neutrinos from SN 1987A were
in accord with all aspects of the above discussion: total emitted energy, timescale and
average neutrino energy.

2. The Equation of State

The equation of state refers to the equations describing how the pressure and other
thermodynamic variables such as the free energy and entropy depend upon the quantities of
density, temperature and composition. For high density matter, such as is found in neutron
stars, the composition is not well understood. Even if it were, the equation of state would
remain highly uncertain. This is in contrast to most other astrophysical objects, such as
normal stars and white dwarfs, in which the equation of state can be (mostly) adequately
described by that of a perfect (non-interacting) gas.

Nevertheless, the equation of state of a non-interacting fermion gas serves as a useful
framework. The extension of the equation of state to the highly interacting case will also be
discussed, using a phenomenological approach that can be considered as an extrapolation
from the relatively well-understood matter found in atomic nuclei.

2.1. Equation of State of a Perfect Fermion Gas

The energy of a non-interacting particle is related to its rest mass m and momentum
p by the relativistic relation

E2 = m2c4 + p2c2. (2.1)
The occupation index is the probability that a given momentum state will be occupied.
For fermions, it is:

f =
[
1 + exp

(
E − µ

T

)]−1

, (2.2)

where µ is the chemical potential. When the particles are interacting, E generally contains
an effective mass and an interaction energy contribution. µ corresponds to the energy
change when a particle is added to or subtracted from the system. We will use units such
that kB=1; thus T = 1 MeV corresponds to T = 1.16 × 1010 K.

The number and internal energy densities are given, respectively, by

n =
g

h3

∫
fd3p; ε =

g

h3

∫
Efd3p (2.3)

where g is the spin degeneracy (g = 2j + 1 for massive particles, where j is the spin of the
particle, i.e., g = 2 for electrons, muons and nucleons, g = 1 for neutrinos). The entropy
per baryon s can be expressed as

ns = − g

h3

∫
[f ln f + (1 − f) ln (1 − f)] d3p (2.4)
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Figure 2.1: Occupation probabilities for various µ and T ; all energies are
in MeV.

and the thermodynamic relations

P = n2∂ (ε/n)
∂n

∣∣∣
s

= Tsn + µn − ε (2.5)

gives the pressure. Incidentally, the two expressions (Eqs. (2.4) and (2.5)) are generally
valid for interacting gases, also. We also note, for future reference, that

P =
g

3h3

∫
p
∂E

∂p
fd3p. (2.6)

Thermodynamics gives also that

n =
∂P

∂µ

∣∣∣∣
T

; ns =
∂P

∂T

∣∣∣∣
µ

. (2.7)

Note that if we define degeneracy parameters φ = µ/T (useful in the relativistic case) and
ψ = (µ − mc2)/T (useful in the non-relativistic case) the following relations are valid:

P = −ε + n
∂ε

∂n

∣∣∣∣
T

+ T
∂P

∂T

∣∣∣
n
;

∂P

∂T

∣∣∣∣
φ

= ns + nφ;
∂P

∂T

∣∣∣∣
ψ

= ns + nψ. (2.8)

In general, these equations are non-analytic except in limiting cases and full integra-
tions are necessary. A useful two-dimensional polynomial expansion has been developed
by Eggleton, Flannery and Faulkner8 and refined by Johns, Ellis andLattimer9. Fig. 2.2
shows thebehavior of various thermodynamic quantities in the density-temperature plane
for an ideal gas.

In many situations, one or the other of the following limits may be realized: extremely
degenerate (φ → +∞), nondegenerate (φ → −∞), extremely relativistic (p >> mc),
non-relativistic (p << mc). In particular, it is useful to examine the cases of extreme de-
generacy and extreme relativity (EDER), extreme degeneracy and non-relativity (EDNR),
and non-degeneracy and non-relativity (NDNR).
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Figure 2.2: Thermodynamics of a perfect fermion gas. Contours of ψ
(solid curves) and φ (dashed curves) run from lower left to upper right. Or-
thogonal solid lines show contours of log10 P/(ncmc2), where nc = (g/2π2)(mc/h̄)3.
The four regions where limiting approximations are valid, i.e., extreme cases
of degeneracy and relativity, are indicated by NDNR, EDNR, EDER and
NDER, respectively. These regions are separated by the curves ψ = 0 and
the lines T = mc2 and n = 3nc.

2.1.1. Extreme degeneracy and relativity

In this case, the rest mass is negligible. The pressure is proportional to n4/3.

n =
g

6π2

( µ

h̄c

)3
[
1 +

(
π

φ

)2

+ · · ·
]

,

ε

3
= P =

nµ

4

[
1 +

(
π

φ

)2

+ · · ·
]

,

s =π2/φ + · · ·

EDER (2.9)
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2.1.2. Extreme degeneracy and non-relativity

The presure is proportional to n5/3.

n =
g

6π2

(
2mψT

h̄2

)3/2
[
1 +

1
8

(
π

ψ

)2

+ · · ·
]

,

2
3
(
ε − nmc2

)
= P =

2nψT

5

[
1 +

1
2

(
π

ψ

)2

+ · · ·
]

,

s =π2/2ψ + · · · .

EDNR (2.10)

2.1.3. Non-degeneracy and non-relativity

n =g

(
mT

2πh̄2

)3/2

eψ,

2
(
ε − nmc2

)
/3 = P =nT,

s =5/2 − ψ.

NDNR (2.11)

2.1.4. Relativistic including particle-antiparticle pairs

In chemical equilibrium, the chemical potential of antiparticles µ(−) = −µ(+), where
µ = µ(+) is the chemical potential of the particles. This situation is appropriate for trapped
neutrinos, and also for electrons above 106 g cm−3 or T > 0.5 MeV.

n =n(+) − n(−) =
g

6π2

(
T

h̄c

)3
[
1 +

(
πT

µ

)2
]

,

ε

3
= P =

gµ

24π2

( µ

h̄c

)3
[
1 + 2

(
πT

µ

)2

+
7
15

(
πT

µ

)4
]

,

s =
gTµ2

6n (h̄c)2

[
1 +

7
15

(
πT

µ

)2
]

.

(2.12)

Note that the equation for the density can be inverted to yield

µ = r − q/r, r =
[(

q2 + r2
)1/2

+ t
]1/3

, t =
3π2

g
n (h̄c)3 , q =

(πT )2

3
. (2.13)
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2.2. Interacting Fermi Gas

Most equations of state for neutron stars are based on one of two approaches – non-
relativistic potential models or relativistic field-theoretical models. Examples of the former
include Skyrme forces, while Walecka-type models are examples of the latter. We present
only a brief descriptions of non-relativistic models10.

2.2.1. Non-relativistic potential models

The uniform matter energy density, which is dependent upon particle densities and
temperature only, is given by a bulk Hamiltonian density HB

ε (nn, np, T ) = HB (nn, np, τn, τp) , (2.14)

which is a funcional of both nucleon densities (nn, np) and the auxiliary variables of kinetic
energy densities (τn, τp). Treating the single particle states as plane waves, the so-called
Thomas-Fermi approximation, the single particle energies of the nucleons are defined by

Et (p) =
∂HB

∂τt
p2 +

∂HB

∂nt
≡ h̄2

2m∗
t

p2 + Vt. (2.15)

It is convenient to have thereby defined the effective nucleon masses m∗
t and interaction

potentials Vt. t = n, p is the isospin index. The occupation probabilities are

ft (p, T ) = [exp ([εt (p) − µt] /T ) + 1]−1 , (2.16)

The number and kinetic densities become

nt =
(
2π3h̄3)−1

∫ ∞

0
ft (p, T )d3p =

1
2π2h̄3

(
2m∗

t T

h̄2

)3/2

F1/2 (ηt) , (2.17a)

τt =
(
2π3h̄5

)−1
∫ ∞

0
ft (p, T ) p2d3p =

1
2π2h̄5

(
2m∗

t T

h̄2

)5/2

F3/2 (ηt) , (2.17b)

where Fi is the normal Fermi integral

Fi (η) =
∫ ∞

0

ui

1 + exp (u − η)
du, (2.18)

and ηt = (µt −Vt)/T is the degeneracy parameter. It is also clear that the uniform matter
energy density can be written now as a sum of kinetic and potential contributions

ε = HB =
∑

t

h̄2

2m∗
t (nn, np)

τt + U (nn, np) (2.19)

where U is the potential energy density. Therefore, the bulk nuclear force is completely
specified by the density dependance of m∗ and U . The temperature contributions enter
only from the Fermi statistics in the kinetic energy term.
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From Eq. (2.15) it can be seen that Vt satisfies

Vt =
h̄2

2

∑
s

τs
∂ (m∗

s)
−1

∂nt
+

∂U

∂nt
. (2.20)

The entropy density of interacting Fermi-Dirac particles is

St =
1

2π3h̄2

∫ ∞

0
ft ln ft + (1 − ft) ln (1 − ft) d3p =

5h̄2τt

6m∗
t T

− ntηt. (2.21)

The pressure is

P =
∑

t

(ntµt + TSt) − E =
∑

t

(
ntVt +

h̄2τt

3m∗
t

)
− U. (2.22)

The free energy density F is

F = ε − TS =
∑

t

(
ntηt − h̄2τt

3m∗
t

)
+ U. (2.23)

2.2.2. Schematic Hamiltonian density

Models for the Hamiltonian density can be relatively complicated, but many of the
concepts can be illustrated by using a parametrized energy density

ε (n, T, x) = n

[
B +

K

18

(
1 − n

n0

)2

+ Sv
n

n0
(1 − 2x)2 + a

(n0

n

)2/3
T 2

]
. (2.24)

Actually, this is an excellent approximation in the vicinity of the nuclear saturation den-
sity n ∼ n0 � 0.16 fm−3 (corresponding to a mass density of about ρ14 = 2.7 for cold
(T = 0), symmetric (x = 1.2) matter. In Eq. (2.24), B � −16 MeV represents the
binding energy of cold symmetric matter at the saturation density, K � 225 MeV is the
incompressibility parameter, Sv � 30 MeV is the volume symmetry energy parameter,
and a � (15 MeV)−1 is the nuclear level density parameter. In other words, Eq. (2.24)
represents an three-dimensional expansion for the energy in the vicinity of n = n0, T = 0
and x = 1/2. However, we will utilize this energy function with some success even under
extreme extrapolations, such as to very low and high densities, to moderate temperatures,
and to extremely neutron-rich matter. Even though this model appear to break down
in some circumstances , in almost all situations its use remains justifiable. For example,
the energy per baryon is finite at zero density and temperature unless B = −K/18, and
is infinite at zero density and finite temperatures. Nevertheless, in most applications we
need the energy density rather than the specific energy, and this of course vanishes at zero
density.

Two of the parameters in Eq. (2.24), B and Sv, are constrained by nuclear masses
and K has been constrained by giant monopole resonances in nuclei. The level density
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parameter is also constrained by laboratory measurements. However, these constraints
are not perfect because nuclei have finite size while Eq. (2.24) refers to infinite matter.
Therefore surface and Coulomb effects have to be considered. Because surface effects are
generally reduced compared to volume effects by a factor A−1/3, they remain large even
in the largest nuclei. For example, it is believed that surface contributions to the nuclear
specific heat (i.e., the a parameter) are fully equal to the volume contribution. In a similar
way, surface energies, surface symmetry energies and incompressibility contributions are
comparable to volume terms and difficult to uniquely determine.

From the energy density of uniform matter Eq. (2.24), one can determine the pressure,
chemical potentials and entropy density:

P =
n2

n0

[
K

9

(
n

n0
− 1
)

+ Sv (1 − 2x)2
]
− 2a

3
n
(n0

n

)2/3
T 2,

µn =B +
K

18

(
1 − n

n0

)(
1 − 3

n

n0

)
+ 2Sv

n

n0

(
1 − 4x2

)− a

3

(n0

n

)2/3
T 2,

µ̂ =4Sv
n

n0
(1 − 2x) ,

S =2an
(n0

n

)2/3
T.

(2.25)

These approximations have a number of believable aspects: the pressure vanishes both at
zero density and at n0, and is negative in-between, and the neutron and proton chemical
potentials tend to negative infinity in the limit of low density. The latter is the correct
behavior, valid for a non-degenerate gas, even though Eq. (2.24) is a degenerate expansion.

2.3. Phase Coexistence

We saw that the pressure, at zero temperature, in the density range from 0 to n0

is negative. Ordinary matter cannot exist in such a condition. In practice, matter will
separate into two phases, both with the same pressure, in this case 0. We can illustrate
that dividing such matter into two phases with different densities will result in a lower free
energy than a single uniform phase at the same average density. Plus, the pressure of the
two-phase mixture will no longer be negative.

Matter in the two phases in phase coexistence will have to be in chemical and pressure
equilibrium. This can be illustrated simply for the case of symmetric matter. The total
free energy density of this system will satisfy

F1 = uFI + (1 − u) FII , (2.26)
n = unI + (1 − u)nII . (2.27)

Minimizaing F1 with respect to nI and u, using the density constraint to eliminate nII ,
results in

∂F1

∂nI
=u

∂FI

∂nI
+ (1 − u)

∂FII

∂nII

( −u

1 − u

)
= 0,

∂F1

∂u
=FI − FII + (1 − u)

∂FII

∂nII

( −nI

1 − u
+

nII

1 − u

)
= 0.

(2.28)
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Figure 2.3: Lower panel: Pressure isotherms for the schematic energy
density for x = 1/2. Dashed lines connect the two densities satisfying
equilibrium conditions. Upper panel: The coexistence region in the density-
temperature plane is colored yellow. The critical density and temperature
are indicated by a filled black circle. Entropy per baryon contours are also
displayed. Parameters used were K = 225 MeV, a = (15 MeV)−1.

These result in the equilibrium conditions

µI = µII , PI = PII ,

where µ = ∂F/∂n. Approximately, for the schematic energy density Eq. (2.24) in the limit
T → 0, these equations have the solution nI = n0 and nII ≈ 0. In this case PI = PII = 0
and µI = µII � B. (Note that one has to work in the limit T → 0 rather than use T = 0.)
Since u = n/ns, one finds that F1 = nB.

On the other hand, uniform matter at the density n will have a free energy density

F2 = n

[
B +

K

18

(
1 − n

n0

)2
]

= F1 + n
K

18

(
1 − n

n0

)2

.

Obviously, F2 > F1. System 1 is preferred, and has a physically achievable pressure, unlike
system 2 for which P2 < 0.

At finite temperature, phase coexistence is still possible, but for a lessened density
range. Fig. 2.3 shows the phase coexistence region for the parametrized energy density

L007 13

33rd SLAC Summer Institute on Particle Physics (SSI 2005), 25 July - 5 August 2005



of Eq. (2.24). The lower part of the figure displays the pressure along isotherms, and
the dashed lines connect the densities where the equilibrium conditions are satisfied. It
is clear that a maximum temperature exists for which two-phase equilibrium is possible.
This critical temperature Tc, and the accompanying critical density nc, is defined by the
conditions

∂P

∂n
=

∂2P

∂n2
= 0.

For the energy density of Eq. (2.24), one can show that

nc =
5
12

n0, Tc =
(

5
12

)1/3( 5K

32a

)1/2

, sc =
(

12
5

)1/3(5Ka

8

)1/2

,

where sc is the entropy per baryon at the critical point.
When matter is asymmetric, that is Ye < 1/2, an additional constraint corresponding

to charge neutrality is enforced:
nYe = unIxI + (1 − u) nIIxII , (2.29)

where Ye is the ratio of protons to baryons (the number of electrons equals the number
of protons for charge neutrality). Minimizing the free energy density Eq. (2.26) using
Eqs. (2.29) and (2.27) results in the equilibrium coniditions

µn,I = µn,II , µp,I = µp,II , PI = PII. (2.30)
While the resulting phase coexistence region remains similar to that found in Fig. 2.3, the
maximum temperature for coexistence is less than Tc and the pressure along isotherms
steadily increases through the two-phase region rather than remaining constant.

2.4. Nuclear Droplet Model

The results for phase coexistence illustrate that at zero temperature, the entire region
with densities less than n0 consists of nuclei: the dense phase within nuclei is in equilib-
rium with the surrounding gas. The density inside nuclei is close to the saturation density
n0. However, the phase coexistence model only demonstrates that matter divides into two
phases, but does not indicate the sizes of the resulting nuclei. To a very good approxi-
mation, finite-size effects of nuclei can be described by a droplet model. This approach
was considered for zero temperature nuclei in dense matter originally by Baym, Bethe and
Pethick11. Lattimer et al.12 extended the treatment to finite temperature,corrected the
treatment of the surface energy, and introduced the concept of using consistent nuclear
interactions for matter both inside and outside the nuclei. Lattimer and Swesty13 extended
the treatment to includenuclear shape variations and alternate nuclear interactions. The
treatment described here is based on Ref. 12 and Ref. 13, and further details can be sought
therein. Essentially, Eq. (2.26) is modified:

F1 = u

(
FI +

fLD

VN

)
+ (1 − u) FII , (2.31)

where the liquid droplet energy of a nucleus is fLD = fS + fC + fT , where the three major
finite-size effects concern surface, Coulomb and translational contributions, respectively.
To leading order, these effects can be considered separately.
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2.4.1. Nuclear Coulomb energy

The Coulomb energy of a uniform density charged sphere is 3(Ze)2/(5RN), where RN

is the nuclear radius. As calculated in Ref. 11, at high densities this energy is modified by
the close proximity of other nuclei (lattice effects). In the Wigner-Seitz approximation, the
uniform density nucleus is contained within a neutral sphere of volume Vc = VN/u, where
VN = 4πR3

N/3 is the nuclear volume. The background neutralizing electrons are uniformly
distributed within Vc. Finite temperature effects may be ignored. The total Coulomb free
energy of this configuration is

fc =
3
5

Z2e2

RN

(
1 − 3

2
u1/3 +

u

2

)
≡ 3

5
Z2e2

RN
D (u) . (2.32)

The function D used here is for spherical nuclei. However, as Ravenhall, Pethick and
Wilson14 showed,nuclear deformations and changes to rods or plates can be accomodated
by a suitable modification of D. For more discussion, see Ref. 13, and also see Fig. 3.1.

2.4.2. Nuclear translational energy

Nuclei themselves are (relatively) non-interacting, non-degenerate and non-relativistic.
Hence, in addition to their internal energies, they have a translational free energy per
nucleus of

fT = T ln
(

u

nQVNA3/2

)
− T ≡ µT − T, nQ =

(
mbT

2πh̄2

)3/2

. (2.33)

To simplify the following algebra, we choose to modify this result to

fT =
VNnI

A0
(µT − T ) ≡ VNnI

A0

[
ln

(
unI

nQA
5/2
0

)
− 1

]
, (2.34)

where A0 � 60 is taken to be a constant.

2.4.3. Nuclear surface energy

In principle, one can consider the surface energy of a sphere to be the area multiplied by
the surface tension. However, in terms of thermodynamics, the surface tension is actually a
surface thermodynamic potential density. In any case, the surface tension can be calculated
by minimizing the total free energy involved in a semi-infinite interface. The minimization
is a functional variation because the free energy must be optimized with respect to the
density profile across the interface. Up until now, we have considered only the volume free
energy of uniform nuclear matter. But in the vicinity of the nuclear surface, the density
is rapidly varying. This introduces an additional gradient term to the total free energy
density, which to lowest order can be written

F = FI + F∇ = FI (n) +
1
2
Q (n) (∇n)2 , (2.35)
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where FI(n) is the uniform matter energy density and F∇(n,∇n) contain gradient contri-
butions.

First, consider symmetric matter so only one species of nucleon need be included.
We need to minimize the total free energy subject to the constraint of a fixed number of
particles

f̃ =
∫ ∞

0
(F − µn) d3r � 4πR2

N

∫ ∞

−∞
(F − µn) dx (2.36)

where F is the free energy density and µ is a Lagrange parameter that turns out to be
the chemical potential of the system. The right-hand side of this expression represents the
leptodermous expansion to a semi-infinite interface. Note that F − µn vanishes at large
distances from the surface so that the integral is finite. As x → +∞ this result is trivial,
since both F and n vanish. As x → −∞ this requires that µ = F (n0)/n0, where in the
symmetric matter case n0 is the saturation density. In this model, the surface radius is
defined by ∫ ∞

0
nd3r = 4πn0R

3
N/3 = A.

Also note that since µA is the energy of A nucleons at the saturation density that the
nuclear surface energy is just fS ≡ f̃min, the minimized energy in Eq. (2.36).

To proceed, we assume for simplicity that Q is independent of density, although this
is not necessary. Minimizing Eq. (2.36), which is equivalent to minimizing the argument
of the integral only, we find

∂FI

∂n
− µ − Qn′′ = 0. (2.37)

Derivatives with respect to density are indicated by ′’s. Multiplying this equation by n′,
it can be integrated to yield

1
2
Qn′2 = FI − µn. (2.38)

We chose the constant of integration to ensure that the density gradient vanishes far
from the interface. This equation can be further integrated to yield the density profile,
although this step is not necessary to determine the surface tension. Substituing Eq. (2.38)
into Eq. (2.36) thus gives

σ =
∫ ∞

−∞
(F − µn) dx =

∫ ∞

−∞

(
FI − µn +

Q

2
n′′
)

dx = 2
∫ ∞

−∞
(FI − µn) dx

=
√

2Q

∫ n0

0

√
FI − µn dn.

(2.39)

As an example, consider the schematic free energy density Eq. (2.24) in the case of
symmetric matter and zero temperature. We have µ = B. The surface energy becomes,
using Eq. (2.39),

σ =
1
3

√
QKn3

0

∫ n0

0

(
n

n0

)1/2(
1 − n

n0

)
d

(
n

n0

)
=

4
45

√
QKn3

0. (2.40)

In this case there is no difference between the surface free energy per unit area and the
surface tension, or thermodynamic potential per unit area, because the pressure at both
boundaries vanishes. The surface free energy is thus 4πR2

Nσ.
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For asymmetric matter, we choose x0 = np∞/n∞ to be the proton fraction in the dense
phase. There are two contraints, one each for proton number and neutron number. In this
case

σ =
∫ ∞

−∞
(F − µnnn − µpnp − P∞) dx, (2.41)

where
F = FI +

1
2

[
Qnn (∇nn)2 + 2Qnp∇nn∇np + Qpp (∇np)

2
]
. (2.42)

Also, P∞ is the equilibrium pressure. Minimizing the integrand of Eq. (2.41) with respect
to the neutron and proton density profiles, one finds

Qnnn′′
n + Qnpn

′′
p =

∂FI

∂nn
− µn,

Qnpn
′′
n + Qppn

′′
p =

∂FI

∂np
− µp.

(2.43)

These can be written as

(Qnn + Qnp)n′′ =
∂FI

∂nn
− µn +

∂FI

∂np
− µp = 2

∂FI

∂n
− µn − µp,

(Qnn − Qnp)α′′ =
∂FI

∂nn
− µn − ∂FI

∂np
+ µp = 2

∂FI

∂α
− µ̂.

(2.44)

We introduced the asymmetry density as α = nn − np.
For the case of the schematic energy density at zero temperature, Eq. (2.24), P∞ will

vanish unless the proton fraction in the dense phase is so small that the neutron chemical
potential there becomes positive. Assuming P∞ = 0, one has

(Qnn + Qnp)n′′ =
K

9

(
3
n − n∞

n0
− 4
)

,

(Qnn − Qnp) α′′ =
4Sv

n0
(α − α∞) ,

(2.45)

where α∞ = n∞(1− 2x∞). We introduced the equilibrium density n∞ in the dense phase,
defined by

n∞
n0

= 1 − 9Sv

K
(1 − 2x∞)2 . (2.46)

Of course, for x∞ = 1/2, n∞ = n0. Each of Eq. (2.36) can be integrated:

(Qnn + Qnp)
2

n′2 =
K

9

(
n∞ − n

n0

)2

(n + 2n∞ − 2n0) ,

Qnn − Qnp

2
α′2 =

2Sv

n0
(α∞ − α)2 .

(2.47)

It is apparent that the quantity σ is not a free energy but rather a thermodynamic
potential density per unit area. A thermodynamic potential is a perfect differential of the
chemical potential and the temperature. Thus we choose to write the surface tension as
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σ(µs) where µs is the chemical potential of the nucleons in the surface15. The number
ofparticles associated with the surface per unit area is νs = −∂σ/∂µs from thermodynam-
ics, and the surface free energy density is then σ + µsνs. Thus, if the surface tension is
expressed as a quadratic expansion, and P∞ = 0, one has

σ = σ0 − σδ (1 − 2xI)
2 , µ̂II = 4Sv (1 − 2xI)n∞/n0, . (2.48)

The determination of the function σ(µs) is discussed below.

2.4.4. Electron energy

Electrons form a nearly ideal and uniform gas, so the perfect fermion EOS discussed
earlier is appropriate for them. The electron EOS does not affect the relative energies of
the baryons, except for influencing the composition of matter in beta equilibrium. For the
calculations described below, we employed the relations of Eq. (2.12).

2.4.5. Liquid droplet equilibrium conditions

The total nucleonic free energy density of matter containing nuclei in the droplet model
can now be written:

F1 =uFI + (1 − u)FII + u
4πR2

N

VN
(σ + µsνs) +

3
5

Z2e2

RNVN
D +

unI

A0
(µT − T )

=u

[
FI +

3
RN

(σ + µsνs) +
4π

5
(nIxIeRN)2 +

nI

A0
(µT − T )

]
+ (1 − u)FII .

(2.49)

In addition, we have the conservation equations

n + unI + (1 − u)nII , nYe = unIxI + (1 − u)nIIxII +
3u

RN
νs. (2.50)

Using these two equations to relate nII and xII to other variables, we minimize F1:

0 =
1
u

∂F1

∂nI
= µn,I − xI µ̂I − µn,II + xII µ̂II + µ̂II (xI − xII)

+
8π

5
nI (xIeRN)2 D +

µT

A0
, (2.51a)

0 =
∂F1

∂xI
= unI

(
µ̂II − µ̂I +

8π

5
xInI (eRN )2 D

)
, (2.51b)

0 =
∂F1

∂νs
=

3u

RN
(µ̂II + µs) , (2.51c)

∂FI

∂µs
=

3u

RN

(
∂σ

∂µs
+ νs

)
, (2.51d)

0 =
∂F1

∂u
= FI − FII +

3
RN

(σ + µsνs) +
nI

A0
µT +

(
µn,II − xII µ̂II

)
(nII − nI)

+
3

RN
µ̂IIνs − nI (xI − xII) +

4π

5
(nIxIeRN )2

(
D + uD′) , (2.51e)

0 =
∂F1

∂RN
= u

[
− 3

R2
N

(σ + µsνs) +
8π

5
(nIxIe)

2 RN − 3
R2

N

µ̂IIνs

]
. (2.51f)
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These can be more compactly written as

µn,II = µn,I +
µT

A0
, (2.52a)

µ̂II = − µs = µ̂I +
3σ

RNnIxI
, (2.52b)

νs = − ∂σ

∂µs
= − ∂σ

∂xI

(
∂µs

∂xI

)−1

, (2.52c)

PII = PI +
3
2

σ

RN

(
1 +

uD′

D

)
, (2.52d)

RN =
(

15σ

8πn2
Ix

2
Ie

2D

)1/3

. (2.52e)

These have simple physical interpretations: neutron and proton chemical equalities, modi-
fied by translation and Coulomb effects; pressure equality, modified by surface and Coulomb
effects, the definition of the nucleon surface density, and, lastly, the Nuclear Virial Theo-
rem, due to Baym, Bethe and Pethick, which states that the optimum nuclear size, for a
given charge ratio, is set when the surface energy equals twice the Coulomb energy. We
see that this theorem is correct only if the surface “energy” actually refers to the surface
thermodynamic potential.

The overall pressure and chemical potentials of matter with nuclei can be simply stated:

P = PII + Pe, µn = µn,II , µ̂ = µ̂II . (2.53)

Some results of the liquid droplet EOS are displayed in Fig. 2.4 and Fig. 2.5, for
Ye = 0.35 and Ye = 0.02, respectively. The electron contributions to all thermodynamics
have been included. Also, photon contributions are also included. Note that nuclei persist
to high temperatures even for very neutron-rich matter, althought the mass fractions of
nuclei in the most extreme case are only a few percent even at the lowest temperatures.

3. Internal Composition of Neutron Stars

A schematic view of the insides of a neutron star, courtesy of D. Page, is shown in
Fig. 3.1. A neutron star can be considered as having five major regions, the inner and outer
cores, the crust, the envelope and the atmosphere. The atmosphere and envelope contain
a negligible amount of mass, but the atmosphere plays an important role in shaping the
emergent photon spectrum, and the envelope crucially influences the transport and release
of thermal energy from the star’s surface. The crust, extending approximately 1 to 2 km
below the surface, primarily contains nuclei. The dominant nuclei in the crust vary with
density, and range from 56Fe for matter with densities less than about 106 g cm−3 to nuclei
with A ∼ 200 but x ∼ (0.1−0.2) near the core-crust interface at n ≈ n0/3. Such extremely
neutron-rich nuclei are not observed in the laboratory, but rare-isotope accelerators hope
to create some of them.
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Figure 2.4: Liquid droplet EOS, parameters from Ref. 13. Ye = 0.35
Upperleft: Pressure and entropy contours. Upper right: Contours of µn

and µ̂ − µe. Lower left: A, Z and Ns = 4πR2
Nνs contours. Lower right:

Contours of mass fractons of heavy nuclei (XH) and α particles (Xα).

Within the crust, at densities above the so-called “neutron drip” density 4 × 1011 g
cm−3 where the neutron chemical potential (the energy required to remove a neutron from
the filled sea of degenerate fermions) is zero, neutrons leak out of nuclei. At the highest
densities in the crust, more of the matter resides in the neutron fluid than in nuclei. At
the core-crust interface, nuclei are so closely packed that they are virtually touching. It
could well be that at somewhat lower densities, the nuclear lattice turns “inside-out“ and
forms a lattice of voids, which is eventually squeezed out at densities near n0, as described
in Ref. 12. If so, beginning at about 0.1n0, there could be a continuous change of the
dimensionality of matter from 3-D nuclei (meatballs), to 2-D cylindrical nuclei (spaghetti),
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Figure 2.5: Same as Fig. 2.4, but for Ye = 0.02.

to 1-D slabs of nuclei interlaid with planar voids (lasagna), to 2-D cylindrical voids (ziti),
to 3-D voids (ravioli, or Swiss cheese in Fig. 3.1 before an eventual transition to uniform
nucleonic matter (sauce). This series of transitions is thus known as the “nuclear pasta”.

It seems likely that for temperatures smaller than about 0.1 MeV the neutron fluid
in the crust forms a 1S0 superfluid. This is important because, first, it would alter the
specific heat and the neutrino emissivities of the crust, thereby affecting how neutron stars
cool. Second, it would form a reservoir of angular momentum that, being loosely coupled
to the crust, could play a major role in pulsar glitch phenomena.

The core comprises nearly all the mass of the star. At least in its outer portion,
it consists of a soup of nucleons, electrons and muons. The neutrons could form a 3P2

superfluid and the protons a 1S0 superconducter within the outer core. In the inner core
exotic particles such as strangeness-bearing hyperons and/or Bose condensates (pions or
kaons) may become abundant. It is even possible that a transition to a mixed phase of
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Figure 3.1: The internal composition of a neutron star. The top band
illustrates the geometric transitions that might occur, from uniform matter
at high densities, to spherical nuclei at low densities. Superfluid aspects of
the crust and core are shown in insets.

hadronic and deconfined quark matter develops, even if strange quark matter is not the
ultimate ground state of matter. Recent years have seen intense activity in delineating
the phase structure of dense cold quark matter. Novel states of matter uncovered so far
include color-superconducting phases with and without condensed mesons. Examples in
the former case include a two-flavor superconducting (2SC) phase, a color-flavor-locked
(CFL) phase, a crystalline phase, and a gapless superconducting phase. The densities at
which these phases occur are still somewhat uncertain. In quark phases with finite gaps,
initial estimates indicate gaps of several tens of MeV or more in contrast to gaps of a few
MeV in baryonic phases.
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3.1. Crustal Neutron Star Matter: n < n0

It is instructive to examine some consequences of the equilibrium conditions derived
above as they pertain to the composition of matter in the crust of a neutron star, i.e.,
where the density n < n0. A cold neutron star is in beta equilibrium, since neutrinos can
freely escape on the timescales of interest. In such matter, the optimum composition is
obtained by finding the optimum value of Ye by free energy minimization, which results in

µ̂ = µe = h̄c
(
3π2nYe

)1/3
, (3.1)

where the electrons are assumed to be degenerate and relativisitic. For the SKM* interac-
tion, the beta-equilibrium properties of the matter are shown in Fig. 3.2. Note that at zero
temperature, Ye has a minimum in the vicinity of 0.02n0 with a value of about 0.02. Also,
the abundance of heavy nuclei abruptly decreases above 10−4 fm−3. Details of the nuclear
composition are shown in Fig. 3.3; it is apparent that the nuclear mass number steadily
increases with density until nuclei dissolve around 0.02 fm−3. (This value of density marks
the minimum value of Ye.)

Figure 3.2: Beta equilibrium matter for the SKM∗ interaction. Left panel:
Ye contours. Right panel: nuclear XH and α particle Xα abundances.

The pressure condition, and the relatively large value of the incompressibility parame-
ter K, ensures, first of all, that the density inside nuclei will remain close to n0 irrespective
of the overall matter density n. The proton fraction inside nuclei, however, will vary more.
In beta equilibrium, using the schematic interaction Eq. (2.24), and assuming that the
abundance of outside nucleons is very small, the liquid droplet model predicts

4Sv (1 − 2xI) +
3
5
xID

4nI

3π2A
= h̄c

(
3π2nxI

)1/3
, (3.2)
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Figure 3.3: Beta equilibrium matter for the SKM∗ interaction. Left panel:
A and Z contours. Right panel: presure and entropy contours.

A =
5π

2nIx
2
Ie

2D

[
σ0 − σδ (1 − 2xI)

2
]
. (3.3)

According to Eq. (3.2), as the density n increases, xI must decrease, as observed in Fig. 3.2
(recall that Ye � xI). As a result, A increases. Around the density n ≈ 10−4n0, the neutron
chemical potential becomes positive. From Eq. (2.25), one has

xd � 1
2

√
1 +

B

2Sv
� 0.41. (3.4)

The linear symmetry energy overestimates xd compared to the models shown in Fig. 3.2.
The “neutron drip point” is the density where Ye � xd. Above this density, neutrons flood
out of nuclei.
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3.2. Ultra-High Density Matter

Despite the existence of many models of nuclear matter that successfully predict several
aspects of nuclear structure, extrapolating these interactions to twice nuclear density and
beyond, or to proton fractions below 0.4, is dangerous. From a practical standpoint, we
have two constraints, namely causality and the existence of neutron stars of at least 1.44
M
. Nevertheless, a lot of freedom still exists. A survey of many often-used nuclear
forces is described in Ref. 16. In Fig. 3.4, we compare the pressure-density relations of
beta-equilibrium neutron star matter for some of these models.

Figure 3.4: Pressure-density relation for EOS’s described in Ref. 16.

The figure notes a number of important points. First, the effective polytropic index
n = ∂P/∂ρ − 1 of most normal nuclear EOS’s is about 1. From the Newtonian equation
of hydrostatic equilibrium, dimensional analysis shows that the stellar radius of an object
with a constant polytropic index.varies in a power law fashion with mass and the constant
K in the polytrope law:

R ∝ Kn/(e−n)M (1−n)/(3−n), P = Kρn+1. (3.5)

Second, at nuclear saturation density, n0 � 0.16 fm−3, and for normal EOS’s, the uncer-
tainty in the pressure is about a factor of 6. It is easily seen that the pressure of matter
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in the vicinity of n0 is completely determine by the symmetry parameter Sv and its den-
sity dependence. Using, for example, the schematic expansion Eq. (2.24), the pressure is
given in Eq. (2.25). Obviously, when n = n0, the pressure at zero temperature is Svn0 for
neutron-rich matter. The schematic energy density in Eq. (2.24) utilized a linearly-varying
symmetry energy per particle. In practice, this might be somewhat too steep. For one
thing, the kinetic energy density of the fermionic baryons has a symmetry energy contribu-
tion that scales as n2/3. In general, if the symmetry energy scales as np, then the pressure
of pure neutron matter at n0 is pn0Sv. According to the scaling in Eq. (3.5), one might
anticipate that the radius of a star constructed with a weaker symmetry energy would be
smaller than one constructed with a stronger symmetry dependence. This is actually true
in practice, as we will observe in the next chapter. The fact that the pressure is uncer-
tain is a direct statement about our lack of knowledge of the symmetry energy’s density
dependence, and leads to about a 50% uncertainty in the predicted neutron star radius.

Third, the strange-quark matter EOS’s, which have a finite density at zero pressure,
have a completely different low-density behavior than normal matter EOS’s. This will lead
to significant differences in the structure of pure strange quark matter stars.

Fourth, it should be noted that many normal EOS’s display significant softening (flat-
tenting) of the pressure-density relation in the range 2 − 4n0. This behavior has conse-
quences for limiting the value of the neutron star maximum mass.

4. Neutron Star Structure

Newtonian hydrostatic equilibrium, which is adequate for most stars, breaks down for
neutron stars. Probably the most important defect is the inability to predict the existence
of the maximum mass. Compactness limits were described over 200 years ago by Laplace,
who demonstrated that the escape velocity

√
GM/R could eventually exceed the speed

of light. Suprisingly, this limit carries over into general relativity (GR), but in addition,
GR predicts a number of further constraints on compactness. Besides the additional limit
imposed on the mass, GR also predicts that the measurement of any neutron star mass
leads to a limit on the maximum density inside any neutron star, and is thus a limit to
the ultimate energy density of cold, static, matter in our universe.

4.1. General Relativistic Structure Equations

We confine attention to spherically symmetric configurations. The metric for the static
case can generally be written

ds2 = eλ(r)dr2 + r2
(
dθ2 + sin2 θdφ2

)− eν(r)dt2. (4.1)

The functions λ(r) and ν(r) are referred to as metric functions. As derived in any text on
GR, Einstein’s equations for this metric are:

8πρ (r) =
1
r2

(
1 − e−λ

)
+ e−λλ′ (r)

r
,

8πp (r) = − 1
r2

(
1 − e−λ

)
+ e−λ ν′ (r)

r
,

p′ (r) = −p (r) + ρ (r)
2

ν′ (r) .

(4.2)
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Derivatives with respect to the radius are denoted by ′. We employ units in which G = c =
1, so that 1 M� is equivalent to 1.475 km. The first of Eq. (4.2) can be exactly integrated.
Defining the constant of integration so obtained as m(r), the enclosed gravitational mass,
one finds

e−λ = 1 − 2m (r) /r, m (r) = 4π

∫ r

0
ρr′2dr′. (4.3)

The second and third of Einstein’s equations form the equation of hydrostatic equilib-
rium, also known as the Tolman-Oppenheimer-Volkov (TOV) equation in GR:

−p′ (r)
ρ (r) + p (r)

=
ν′ (r)

2
=

m (r) + 4πr3p (r)
r (r − 2m (r))

. r ≤ R (4.4)

Near the origin, one has ρ′(r) = p′(r) = m(r) = 0. Outside the distribution of mass, which
terminates at the radius R, there is vacuum with p(r) = ρ(r) = 0, and Einstein’s equations
give

m (r) = m (R) ≡ M, eν = e−λ = 1 − 2M

r
, r ≥ R (4.5)

the so-called Schwarzschild exterior solution. The black hole limit is seen to be R = 2M ,
which is 2.95 km for 1 M�, exactly the limit deduced by Laplace.

From thermodynamics, if there is uniform entropy per nucleon, the first law gives

0 = d
(ρ

n

)
+ pd

(
1
n

)

where n is the number density. If e is the internal energy per nucleon, we have ρ = n(m+e).
From the above, p = n2de/dn, so that

d (log n) =
dρ

ρ + p
= −1

2
dρ

dP
dν, dn =

dρ

h
,

where h = (ρ + p)/n is the enthalpy per nucleon or the chemical potential. The constant
of integration for the number density can be established from conditions at the surface of
the star, where the pressure vanishes (it is not necessary that the energy density or the
number density also vanish there). If n = no, ρ = ρo and e = eo when P = 0, one finds
ρo − mno = noeo and

mn (r) = (ρ (r) + p (r)) e(ν(r)−ν(R))/2 − noeo. (4.6)

Another quantity of interest is the total number of nucleons in the star, N . This is
not just M/mb (mb being the nucleon mass) since in GR the binding energy represents a
decrease of the gravitational mass. The nucleon number is

N =
∫ R

0
4πr2eλ/2n (r) dr =

∫ R

0
4πr2n (r)

[
1 − 2m (r)

r

]−1/2

dr, (4.7)

and the total binding energy is
BE = Nmb − M. (4.8)
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Figure 4.1: Binding energy per unit mass of neutron star models. Key to
EOS’s is in Ref. 16. The thicker curves with larger text symbols represent
various analytic solutions. The yellow shaded band indicates approximation
of Eq. (4.9).

Lattimer and Prakash16 gave an approximate relation between BE andM/R as

BE/M � 0.6β/ (1 − 0.5β) , (4.9)

which is shown in Fig. 4.1 along with representative EOS’s and analytical solutions.
The moment of inertia of a star in the limit of a small rotation rate Ω is obtained from

the expression

I =
8π

3

∫ R

0
r4 (ρ + P ) e(λ−ν)/2 ω̄

Ω
dr, (4.10)

where the metric function ω̄ is a solution of

d

[
r4e−(λ+ν)/2dω̄

dr

]
+ 4r3ω̄de−(λ+ν)/2 = 0 (4.11)

with the surface boundary condition

ω̄ = Ω − R

3

(
dω̄

dr

)
R

= Ω
(

1 − 2I

R3

)
. (4.12)

It is convenient to define j = exp[−(λ + ν)/2]. Then,

I = −2
3

∫ r=R

r=0

ω̄

Ω
dj =

R4

6Ω

(
dω̄

dr

)
R

. (4.13)
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Figure 4.2: Moments of inertia of neutron star models. Key to EOS’s
is in Ref. 16. The thicker curves with larger text symbols represent vari-
ous analytic solutions. The shaded gray band indicates the approximation
Eq. (4.14). Inset shows the behavior for small M/R.

In practice, one integrates the dimensionless second order equation found from Eq. (4.11),

d

[
ξ4j

dω

dξ

]
+ 4ξ3ωdj = 0,

where ξ = r/R, from the origin where the initial values ω(0) = ω̄(0)/Ω = 1 and dω(0)/dξ =
0, to ξ = 1. Then application of the surface bondary condition, Eq. (4.12), yields

I

MR2
=

1
β

(
dω

dξ

)
1

1
6ω1 + 2 (dω/dξ)1

,

where we use the values ω1 and (dω/dξ)1 obtained at ξ = 1. Lattimer and Schutz17 found
an approximation valid for normalEOS’s that don’t display severe softening just above n0:

I � (0.237 ± 0.008)MR2

[
1 + 4.2

M km
R M�

+ 90
(

M km
R M�

)4
]

. (4.14)

This is shown in Fig. 4.2 together with representative EOS’s and analytic solutions.
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4.2. Mass-Radius Diagram for Neutron Stars

Figure 4.3: Mass-Radius diagram. The lines denoted GR, P < ∞, and
causality represent limits to physically realistic structures (see text). Black
curves are for normal nucleonic EOS’s, while green curves (SQM1 and
SQM3) are for pure strange quark matter stars. The notation for the
EOS’s is detailed in Ref. 16. The red region labeled rotation shows a limit
derived from the most rapidly rotating pulsar. Orange curves are contours
of radiation radii R∞ = R/

√
1 − 2GM/R. The dashed line is a limit de-

rived from Vela pulsar glitches, while z = 0.35 is the redshift of candidate
spectral lines on a neutron star.

Given the relation P (ρ) where ρ is the mass-energy density, the TOV equations can
be integrated. Fig. 4.3 shows the mass as a function of radius for selected EOS’s. Note
the dramatic differences among normal EOS’s, and also the difference between normal and
strange quark matter EOS’s. The presence of a maximum mass for each EOS is apparent.
In addition, there is a minimum mass as well, with a value of approximately 0.09 M�,
but this is no displayed since Rmin is of order 200 km. It is interesting to note that many
normal nucleonic EOS’s have the property that in the mass range near 1 M� the radius
is relatively independent of the mass. This behavior is related to the approximate n = 1
polytrope behavior observed previously.
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4.3. Analytic Solutions to Einstein’s Equations

It turns out there are hundreds of analytic solutions to Einstein’s equations. However,
there are only 3 that satisfy the criteria that the pressure and energy density vanish on
the boundary R, and that the pressure and energy density decrease monotonically with
increasing radius. These are discussed below, together with two of the infinite number of
known solutions that have vanishing pressure, but not energy density, at R.

4.3.1. Uniform density model

Among the simplest analytic solutions is the so-called Schwarzschild interior solution
for a constant density fluid, ρ(r) = constant. In this case,

m (r) =
4π

3
ρr3, e−λ = 1 − 2β (r/R)2 ,

eν =
[
3
2

√
1 − 2β − 1

2

√
1 − 2β (r/R)2

]2

,

p (r) =
3β

4πR2

√
1 − 2β (r/R)2 −√

1 − 2β

3
√

1 − 2β −
√

1 − 2β (r/R)2
,

ρ = n (m + e) = constant, n = constant.

(4.15)

Here, β ≡ M/R. Clearly, β < 4/9 or else the denominator has a zero and the central
pressure will become infinite. It can be shown that this limit to β holds for any star. This
solution is technically unphysical for the reasons that the energy density does not vanish
on the surface, and that the speed of sound, cs =

√
∂p/∂ρ is infinite. The binding energy

for the incompressible fluid is analytic (taking e = 0):

BE

M
=

3
4β

(
sin−1 √2β√

2β
−
√

1 − 2β

)
− 1 � 3β

5
+

9β2

14
+ · · · (4.16)

In the case that e/m is finite, the expansion becomes

BE

M
�
(
1 +

e

m

)−1
[
− e

m
+

3β

5
+

9β2

14
+ · · ·

]
. (4.17)

The moment of inertia can be approimated as

IInc/MR2 � (2/5)
(
1 − 0.87β − 0.3β2

)−1
. (4.18)
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4.3.2. Buchdahl’s solution

In 1967, Buchdahl18 discovered an extension of the Newtonian n = 1polytrope into
GR that has an analytic solution. He assumed an equation of state

ρ = 12
√

p∗p − 5p (4.19)

and found

eν = (1 − 2β) (1 − β − u) (1 − β + u)−1 ;

eλ = (1 − 2β) (1 − β + u) (1 − β − u)−1 (1 − β + β cos Ar′
)−2 ;

8πp = A2u2 (1 − 2β) (1 − β + u)−2 ;

8πρ = 2A2u (1 − 2β) (1 − β − 3u/2) (1 − β + u)−2 ;

mn = 12
√

pp∗
(

1 − 1
3

√
p

p∗

)3/2

; c2
s =

(
6
√

p∗
p

− 5
)−1

.

(4.20)

Here, p∗ is a parameter, and r′ is, with u, a radial-like variable

u = β
(
Ar′
)−1 sin Ar′;

r′ = r (1 − β + u)−1 (1 − 2β) ;

A2 = 288πp∗ (1 − 2β)−1 .

(4.21)

This solution is limited to values of β < 1/6 for cs,c < 1. For this solution, the radius,
central pressure, energy and number densities, and binding energy are

R = (1 − β)
√

π

288p∗ (1 − 2β)
;

pc = 36p∗β2 ; ρc = 72p∗β (1 − 5β/2) ; ncmnc2 = 72βp∗ (1 − 2β)3/2 ;
BE

M
= (1 − 1.5β) (1 − 2β)−1/2 (1 − β)−1 − 1 ≈ β

2
+

β2

2
+

3β3

4
+ · · · .

(4.22)

The moment of inertia can be approximated as

IBuch/MR2 � (2/3 − 4/π2
) (

1 − 1.81β + 0.47β2
)−1

. (4.23)
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4.4. Tolman VII solution

In 1939, Tolman2 discovered that the simple density function ρ = ρc[1 − (r/R)2] has
an analytic solution. It is known as the Tolman VII solution:

e−λ = 1 − βx (5 − 3x) , eν = (1 − 5β/3) cos2 φ,

P =
1

4πR2

[√
3βe−λ tan φ − β

2
(5 − 3x)

]
, n =

(ρ + P )
m

cos φ

cos φ1
,

φ = (w1 − w) /2 + φ1, φc = φ (x = 0) ,

φ1 = φ (x = 1) = tan−1
√

β/ [3 (1 − 2β)],

w = log
[
x − 5/6 +

√
e−λ/ (3β)

]
, w1 = w (x = 1) .

(4.24)

In the above, x = (r/R)2. The central values of P/ρ and the square of the sound speed
c2
s,c are

P

ρ

∣∣∣∣
c

=
2c2

s.c

15

√
3
β

, c2
s,c = tanφc

(
tanφc +

√
β

3

)
. (4.25)

This solution is limited to φc < π/2, or β < 0.3862, or else Pc becomes infinite. For
causality cs,c < 1 if β < 0.2698. There is no analytic result for the binding energy, but in
expansion

BE

M
≈ 11β

21
+

7187β2

18018
+

68371β3

306306
+ · · · . (4.26)

A fit to the moment of inertia is

ITV II/MR2 � (2/7)
(
1 − 1.1β − 0.6β−2

)−1
. (4.27)
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4.4.1. Nariai IV solution

In 1950, Nariai19 discovered yet another analytic solution. It is known as the Nariai
IV solution, and is expressed in terms of a parametric variable r′:

e−λ =

(
1 −

√
3β

(
r′

R′

)2

tan f
(
r′
))2

, eν = (1 − 2β)
e2

c2

(
cos g (r′)
cos f (r′)

)2

,

f
(
r′
)

= cos−1 e +

√
3β

4

[
1 −

(
r′

R′

)2
]

, g
(
r′
)

= cos−1 c +

√
3β

2

[
1 −

(
r′

R′

)2
]

,

r =
e

c

r′

cos f (r′)
√

1 − 2β,

p
(
r′
)

=
cos f (r′)
4πR′2

c2

e2

√
3β

[√
2 cos f

(
r′
)
tan g

(
r′
)

[
1 −

√
3β

(
r′

R′

)2

tan f
(
r′
)]− sin f

(
r′
) [

2 − 3
2

√
3β

(
r′

R′

)2

tan f
(
r′
)]]

,

ρ
(
r′
)

=
√

3β

4πR′2√1 − 2β

c2

e2[
3 sin f

(
r′
)
cos f

(
r′
)−

√
3β

4

(
r′

R′

)2 (
3 − cos2 f

(
r′
))]

,

m
(
r′
)

=
r′3

R′2
e

c

tan f (r′)
cos f (r′)

√
3β (1 − 2β)

[
1 −

√
3β

4

(
r′

R′

)2

tan f
(
r′
)]

.

(4.28)

The quantities e and c are

e2 = cos2 f
(
R′) =

2 + β + 2
√

1 − 2β

4 + β/3

c2 = cos2 g
(
R′) =

2e2

2e2 + (1 − e2) (7e2 − 3) (5e2 − 3)−1 .

The pressure-density ratio and sound speed at the center are
Pc

ρc
=

1
3

(√
2 cot f (0) tan g (0) − 2

)
,

c2
s,c =

1
3
(
2 tan2 g (0) − tan2 f (0)

)
.

The central pressure and sound speed become infinite when cos g(0) = 0 or when β =
0.4126, and the causality limit is β = 0.223. This solution is quite similar to Tolman VII.
The leading order term in the binding energy is identical to Tolman VII, and the moment
of inertia expansion is

I/MR2 � (2/7)
(
1 − 1.32β − 0.21β2

)−1
. (4.29)
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4.4.2. Tolman IV variant

Lake20 discovered a variant of a solution Tolmandiscovered in 19392 and since known
as the Tolman IV solution:

eν =
(2 − 5β + βx)2

4 (1 − 2β)
, e−λ = 1 − 2βx

(
2 − 2β

2 − 5β + 3βx

)2/3

,

m =βRx
3
2

(
2 − 2β

2 − 5β + 3βx

)2/3

,

ρ =
1

4πR2
β

(
6 − 15β + 5βx

2 − 5β + 3βx

)(
2 − 2β

2 − 5β + 3βx

)2/3

,

P =
1

4πR2

β

2 − 5β + βx

[
2 − (2 − 5β + 5βx)

(
2 − 2β

2 − 5β + 3βx

)2/3
]

,

c2
s =

(2 − 5β + 3βx)

5 (2 − 5β + βx)3

[
(2 − 5β + 3βx)5/3

(2 − 2β)2/3
+ (2 − 5β)2 − 5β2x2

]
.

(4.30)

The central values of P/ρ and c2
s are

Pc

ρc
=

1
3

[
2

(2 − 5β)1/3 (2 − 2β)2/3
− 1

]
, c2

s,c =
1
5

[
1

(2 − 5β)1/3 (2 − 2β)2/3
+ 1

]
. (4.31)

This solution has non-vanishing energy density at the surface where the pressure vanishes.
The ratio of the surface to central energy densities is

ρsurf

ρc
=

2
3

(3 − 5β)
(2 − 5β)2/3

(2 − 2β)5/3
, (4.32)

which is unity for β → 0, and tends to zero for β = 2/5. The surface sound speed is

c2
s,surf =

2 − 2β

5 (2 − 4β)3
[
2 − 2β + (2 − 5β)2 − 5β2

]
.‘ (4.33)

A good approximation to the moment of inertia for this solution is

I/MR2 = (2/5)
(
1 − 0.58β − 1.1β3

)−1
, (4.34)

The central pressure, energy density and sound speed become infinite for β ≥ 2/5, and
cs(0) = c when β ≥ 0.3978. On the other hand, cs(R) = c when β = 0.3624. In the limit
of small β, the central and the surface sound speed are both c2

s = 3/10, which makes this
an interesting solution to compare with strange quark matter stars. The sound speed at
large densities in strange quark matter tends to c2

s = 1/3 because of asymptotic freedom.
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4.5. Neutron Star Maximum Mass and Compactness Limit

The TOV equation can be scaled by introducing dimensionless variables:

p = qρo, ρ = dρo, m = z/
√

ρo, r = x/
√

ρo,

dq

dx
= −(q + d)

(
z + 4πdx3

)
x (x − 2z)

,
dz

dx
= 4πdx2dx. (4.35)

Rhoades and Ruffini21 showed that thecausally limiting equation of state

p = po + ρ − ρo ρ > ρo (4.36)

results in a neutron star maximum mass that is practically independent of the equation of
state for ρ < ρo, and is

Mmax = 4.2
√

ρs/ρo M�. (4.37)

Here ρs = 2.7 · 1014 g cm−3 is the nuclear saturation density. One also finds for this
equation of state that

Rmax = 18.5
√

ρs/ρo km, βmax � 0.33 . (4.38)

Since the most compact configuration is achieved at the maximum mass, this represents the
limiting value of β for causality, as Lattimer et al.22 pointed out. This result wasreinforced
by Glendenning23, who performed aparametrized variational calculation to find the most
compace possible stars as a function of mass..

Some justification for the Rhoades-Ruffini result appears from the analytic solutions
of Einstein’s equations. For the Buchdahl solution at the causal limit, β = 1/6 and
p/ρ = β/(2 − 5β), which lead to

M = (1 − β)

√
πβ3 (1 − 5β/2)
4 (1 − 2β) ρc

< 2.14
√

ρs/ρc M�.

For the Tolman VII solution at the causal limit, β � 0.27 and p/ρ = 2/(
√

75β) � 0.44,
which lead to

M =

√
15β3

8πρc
< 4.9

√
ρs/ρc M�.

Finally, for the Nariai IV solution at the causal limit, β � 0.228 and p/ρ � 0.246, which
lead to

M =
β

cos f (R′)

√
33/2β1/2 sin f (0) cos f (0)

4πρc
< 3.4

√
ρs/ρc M�.
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4.6. Maximal Rotation Rates for Neutron Stars

The absolute maximum rotation rate is set by the “mass-shedding” limit, when the
rotational velocity at the equatorial radius (R) equals the Keplerian orbital velocity Ω =√

GM/R3, or

P rigid
min = 0.55

(
10 km

R

)3/2(
M

M�

)1/2

ms (4.39)

for a rigid sphere. However, the actual limit on the period is larger because rotation in-
duces an increase in the equatorial radius. In the so-called Roche model, as described in
Shapiro and Teukolsky24 one treats the rotating star as beinghighly centrally compressed.
For an n = 3 polytrope, ρc/ρ̄ � 54, so this would be a good approximation. In more
realistic models, such as ρ = ρc[1 − (r/R)2], for which ρc/ρ̄ = 5/2, and an n = 1 poly-
trope, for which ρc/ρ̄ = π2/3, this approximation is not as good. Using it anyway, the
gravitational potential near the surface is ΦG = −GM/r and the centrifugal potential is
Φc = −(1/2)Ω2r2 sin2 θ, and the equation of hydrostatic equilibrium is

(1/ρ)∇P = ∇h = −∇ΦG −∇Φc, (4.40)

where h =
∫

dP/ρ is the enthalpy per unit mass. Integrating this from the surface to an
interior point along the equator, one finds

h (r) − GM/r − (1/2)Ω2r2 = K = −GM/re − (1/2)Ω2r2
e ,

where re is the equatorial radius and h(re) = 0. We assume K = −GM/R, the value
obtained for a non-rotating configuration. The potential Φ ≡ ΦG +Φc is maximized at the
point where ∂Φ/∂r

∣∣∣
rc

= 0, or where r3
c = gM/Ω3 and Φ = −(3/2)GM/rc. Thus, re has

the largest possible value when re = rc = 3R/2, or

Ω2 =
GM

r3
c

=
(

2
3

)3
GM

R3
. (4.41)

The revised minimum period then becomes

PRoche
min = 1.0

(
10 km

R

)3/2(
M

M�

)1/2

ms. (4.42)

Calculations including general relativity show that the minimum spin period for an
equation of state, including the increase in maximum mass for a rotating fluid, can be
accurately expressed in terms of its non-rotating maximum mass and the radius at that
maximum mass as:

PEOS
min � 0.82 ± 0.03

(
10 km
Rmax

)3/2(
Mmax

M�

)1/2

ms. (4.43)

An even more useful form describes the maximum rotation rate that a non-rotating object
of mass M and radius R can be spun:

P arbitrary
min � 0.96 ± 0.03

(
10 km

R

)3/2(
M

M�

)1/2

ms, (4.44)
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a result found to be valid for normal EOS’s25. It is moderately violated for strange quark-
matter stars. It is this limit that is plotted in Fig. 4.3, using the highest observed spin
period of a pulsar, 641 Hz from PSR B1937+21.

It is interesting to compare the rotational kinetic energy T = IΩ2/2 with the gravita-
tional potential energy W at the mass-shedding limit. I is the moment of inertia about
the rotation axis:

I =
8π

3

∫ R

0
r4ρdr

for Newtonian stars. (In GR, one must take into account frame-dragging as well as volume
and redshift corrections.) Using Ω2 = (2/3)3GM/R3, we can write T = α(2/3)3GM2/R
and |W | = βGM2/R. We have α = 1/5, β = 3/5 for an incompressible fluid; α =
1/3 − 2/π2, β = 3/4 for an n = 1 polytrope; α = 0.0377, β = 3/2 for an n = 3 polytrope;
α = 1/7, β = 5/7 for Tolman VII for which ρ = ρc[(1 − (r/R)2]. We therefore find
that T/|W | is 0.0988, 0.0516, 0.00745 and 0.0593, respectively, for these four cases, at
the mass-shedding limit. For comparison, an incompressible ellipsoid becomes secularly
(dynamically) unstable at T/|W | = 0.1375(0.2738), much larger values.

4.7. Maximum Density Inside Neutron Stars

If the uniform density model was a good model for a neutron star, the causality limit
would imply a central density

ρc,Inc =
3

4πM2

(
c2

3G

)3

� 5.5 × 1015

(
M�
M

)2

g cm−3. (4.45)

A precisely measured neutron star mass would thus imply a value for the central density
of the star. Furthermore, the larger the measured mass, the smaller the central density of
that star. No other star, no matter what its mass, could have a central density larger than
this value. A lower mass star cannot have a higher central density than that star, and if
another star was more massive, it would have to have a smaller central density according
to Eq. (4.45).

However, the uniform density EOS is not realistic: it violates causality and the density
at the surface ρsurface = 0. But, interestingly enough, a similar relation deduced from the
Tolman VII analytic solution apparently bounds the relation between central density and
maximum mass. By calculating the structures of a large number of neutron stars, Lattimer
and Prakash26 found no EOS has agreater ρc for given Mmax than that predicted by the
Tolman VII solution:

ρc,V II =
5
2
ρc,Inc � 13.8 × 1015

(
M�
M

)2

g cm−3. (4.46)

This result is illustrated in Fig. 4.4, and can be used in the manner described above: the
largest precisely measured neutron star mass determines an upper bound to the density
of matter in a cold, static environment in our universe. Each larger mass star that is
measured will lower this bound. The figure illustrates that a measured mass of about 2.2
M� sets an upper bound of about 8n0, which is perhaps dangerously close to predicted
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Figure 4.4: The central energy density and mass of maximum mass con-
figurations. Symbols reflect the nature of the EOS’s selected from Ref. 16.
NR are non-relativistic potential models, R are field- theoretical models,
and Exotica refers to NR or R models in which strong softening occurs, due
to the occurence of hyperons, a Bose condensate, or quark matter. The Ex-
otica points include self-bound strange quark matter stars. For comparison,
the central density – maximum mass relations for the Tolman VII and uni-
form density (incompressible) models are shown. The dashed line for 2.2
M� serves to guide the eye.

values for the density at which nucleonic matter gives way to deconfined quark matter. In
other words, astrophsysical measurements of neutron star masses may be able to rule out
the existence of deconfined quark matter, at least in cold matter.

4.8. Neutron Star Radii

As previously noted, many EOS’s feature the property that in the vicinity of 1 M�
their radii are relatively independent of the mass. Polytropic relations Eq. (3.5) implied
the value of the radius is connected to the constant K in the EOS, or to the value of the
pressure at a characteristic density. Lattimer and Prakash16 found that, indeed, there is a
strong correlation between the radius of stars with masses 1− 1.5 M� and the pressure in
the vicinity of 1 − 2n0. This correlation is shown in Fig. 4.5.

The correlation has the form:

R (M, n) � C (M, n) [P (n)]0.25 , (4.47)

where P (n) is the total pressure inclusive of leptonic contributions evaluated at the density
n, and M is the stellar gravitational mass. The constant C(M, n), in units of km fm3/4
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Figure 4.5: Empirical relation between pressure, in units of MeV fm−3,
and R, in km, for EOS’s listed in Ref. 16. The upper panel shows results
for 1 M� (gravitational mass) stars; the lower panel is for 1.4 M� stars.
The different symbols show values of RP−1/4 evaluated at three fiducial
densities, n0, 1.5n0 and 2n0.

MeV−1/4, for the densities n = ns, 1.5ns and 2ns, respectively, is 9.53 ± 0.07, 7.16 ± 0.03
and 5.82±0.04 for the 1 M� case, and 9.11±0.21, 6.84±0.15 and 5.57±0.11 for the 1.4 M�
case. The correlation is seen to be somewhat tighter for the baryon density n = 1.5ns and
2ns cases. Note, however, that this exponent is not 1/2 as the n = 1 Newtonian polytrope
predicts. This is a general relativistic effect, as we now demonstrate by using an analytic
solution to Einstein’s equations.

The only analytic solution that explicitly relates the radius, mass and pressure is that
due to Buchdahl. In terms of the parameters p∗ and β ≡ GM/Rc2, the baryon density
and stellar radius are given in Eqs. (4.20) and Eq. (4.22). The exponent in Eq. (4.47) can
thus be found:

d lnR

d lnP

∣∣∣∣
n,M

= 1
2

(
1 − 5

6

√
P

p∗

)(
1 +

1
6

√
P

p∗

)−1
(1 − β) (1 − 2β)
(1 − 3β + 3β2)

. (4.48)

In the limit β → 0, one has P → 0 and d lnR/d lnP |n,M → 1/2, the value characteristic of
an n = 1 Newtonian polytrope. Finite values of β and P reduce the exponent. If M and
R are about 1.4 M� and 15 km, respectively, for example, β � 0.14 and Eq. (4.22) gives
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p∗ = π/(288R2) ≈ 4.85 ·10−5 km−2 (in geometrized units). At a fiducial density n = 1.5ns,
this is equivalent in geometrized units to n = 2.02× 10−4 km−2, or n/p∗ � 4.2. Eq. (4.20)
then implies P/p∗ � 0.2 and Eq. (4.48) yields d lnR/d lnP � 0.28.

This correlation is significant because the pressure of degenerate neutron-star matter
near the nuclear saturation density ns is, in large part, determined by the symmetry
properties of the EOS. For the present discussion, we introduce an additional term, the
skewness, and generalize the symmetry energy, in the schematic expansion Eq. (2.24), so
that the energy per particle is

E (n, x) = −16 + K
18

(
1 − n

n0

)2
+ K′

27

(
1 − n

n0

)3
+ Esym (n) (1 − 2x)2 . . . . (4.49)

Here, K and K ′ are the incompressibility and skewness parameters, respectively, and
Esym is the symmetry energy function, approximately the energy difference at a given
density between symmetric and pure neutron matter. The symmetry energy parameter
Sv ≡ Esym(n0). Leptonic contributions Ee = (3/4)h̄cx(3π2nx4)1/3 must be added. Matter
in neutron stars is in beta equilibrium, i.e., µe = µn − µp = −∂E/∂x, so the equilibrium
proton fraction at n0 is x0 � (3π2n0)−1(4Sv/h̄c)3 � 0.04. The pressure at n0 is

P (n0, x0) = n0 (1 − 2x0)
[
n0S

′
v (1 − 2x0) + Svx0

] � n2
0S

′
v , (4.50)

due the small value of x0; S′
v ≡ (∂Esym/∂n)ns. The pressure depends primarily upon

S′
v. The equilibrium pressure at moderately larger densities similarly is insensitive to K

and K ′. Experimental constraints to the compression modulus K, most importantly from
analyses of giant monopole resonances give K ∼= 220 MeV. The skewness parameter K ′ has
been estimated to lie in the range 1780–2380 MeV. Evaluating the pressure for n = 1.5n0,

P (1.5n0) = 2.25n0

[
K/18 − K ′/216 + n0 (1 − 2x)2 (∂Esym/∂n)1.5n0

]
, (4.51)

and it is noted that the contributions from K and K ′ largely cancel.

5. Observations of Neutron Stars

5.1. Masses

The most accurately measured neutron star masses are from timing observations of the
radio binary pulsars. As shown in Fig. 5.1, these include pulsars orbiting another neutron
star, a white dwarf or a main-sequence star. Ordinarily, observations of pulsars in binaries
yield orbital sizes and periods from Doppler phenomenon, from which the total mass of the
binary can be deduced. But the compact nature of several binary pulsars permits detection
of relativistic effects, such as Shapiro delay or orbit shrinkage due to gravitational radiation
reaction, which constrains the inclination angle and permits measurement of each mass in
the binary. A sufficiently well-observed system can have masses determined to impressive
accuracy. The textbook case is the binary pulsar PSR 1913+16, in which the masses are
1.3867 ± 0.0002 and 1.4414 ± 0.0002 M�, respectively.
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Figure 5.1: Measured and estimated masses of neutron stars in radio
binary pulsars (gold, silver and blue regions) and in x-ray accreting binaries
(green). Letters in parentheses refer to references cited in Ref. 26.

One particularly significant development is mass determinations in binaries with white
dwarf companions, which show a broader mass range than binary pulsars having neutron
star companions. It has been suggested that a rather narrow set of evolutionary circum-
stances conspire to form double neutron star binaries, leading to a restricted range of
neutron star masses. This restriction is relaxed for other neutron star binaries. Evidence
is accumulating that a few of the white dwarf binaries may contain neutron stars larger
than the canonical 1.4 M� value, including the fascinating case27 of PSR J0751+1807 in
which the estimated mass with1σ error bars is 2.2± 0.2 M�. For this neutron star, a mass
of 1.4 M� is about 4σ from the optimum value. In addition, the mean observed value
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of the white dwarf-neutron star binaries exceeds that of the double neutron star binaries
by 0.25 M�. However, the 1σ errors of all but one of these systems extends into the
range below 1.45 M�. Continued observations guarantee that these errors will be reduced.
Raising the limit for the neutron star maximum mass could eliminate entire families of
EOS’s, especially those in which substantial softening begins around 2 to 3ns. This could
be extremely significant, since exotica (hyperons, Bose condensates, or quarks) generally
reduce the maximum mass appreciably.

Masses can also be estimated for another handful of binaries which contain an accreting
neutron star emitting x-rays. Some of these systems are characterized by relatively large
masses, but the estimated errors are also large. The system of Vela X-1 is noteworthy
because its lower mass limit (1.6 to 1.7M�) is at least mildly constrained by geometry28.
Mass estimates of selectedx-ray binaries are also shown in Fig. 5.1.

5.2. Radii and Redshifts

Most known neutron stars are observed as pulsars and have photon emissions from
radio to x-ray wavelengths dominated by non-thermal emissions believed to be generated
in a neutron star’s magnetosphere. Such emissions are difficult to utilize in terms of
constraining the star’s global aspects, such as mass, radius and temperature. However,
approximately a dozen neutron stars with ages up to a million years old have been identified
with significant thermal emissions. Stars of these ages are are expected to have surface
temperatures in the range of 3×105 K to 106 K, i.e., they are predominately x-ray sources.
If their total photon fluxes were that of a blackbody, they would obey

F∞ = L∞/4πd2 = σT 4
∞ (R∞/d)2 , (5.1)

where, d is the distance, and T∞, F∞ and L∞ refer to the temperature, flux and luminosity
redshifted relative to their values at the neutron star surface. The redshift is z = (1 −
2GM/Rc2)−1 − 1. (For example, T∞ = T/(1 + z), F∞ = F/(1 + z)2.) As a result, the so-
called radiation radius, R∞ = R(1 + z), is a quantity that can be estimated if F∞, T∞ and
d are known. R∞ is a function of both M and R, but if redshift information is available,
M and R could be determined. Contours of R∞ are displayed in Fig. 4.3. A value of R∞
requires both that R < R∞ and M < (3

√
3G)−1c2R∞ � 0.13(R∞/km)M−1

� .
A serious problem in determining R∞ and T∞ is that the star’s atmosphere rearranges

the spectral distribution of emitted radiation, i.e., they are not blackbodies29. Neutron star
atmosphere models are mostly limitedto non-magnetized atmospheres, although pulsars
are thought to have intense magnetic fields >∼ 1012 G. Strongly magnetized hydrogen is
relatively simple, but magnetized heavy element atmospheres are still in a state of infancy.

A useful constraint is provided by a few cases in which the neutron star is sufficiently
close for detection of optical radiation. These stars are observed to have optical fluxes
factors of 3 to 5 times greater than a naive blackbody extrapolation from the x-ray range
would imply. This optical excess is a natural consequence of the neutron star atmosphere,
and results in an inferred R∞ substantially greater than that deduced from the x-ray
blackbody. In many cases a heavy-element atmosphere appears to fit the global spectral
distributions from x-ray to optical energies while also yielding neutron star radii in a
plausible range. However, the observed absence of narrow spectral features, predicted by
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Figure 5.2: Estimated mass and radius for RX J185635-3754 from Ref. 30
and Ref. 31 (dark blue region).

heavy-element atmosphere models, is puzzling. The explanation could lie with broadening
or elimination of spectral features caused by intense magnetic fields or high pressures.

The estimation of radii from isolated neutron stars is also hampered by uncertainties
of source distance. Distances to pulsars can be estimated by their dispersion measures,
but in a three cases (Geminga, RX J185635-3754 and PSR B0656+14) parallax distances
have been obtained, although errors are still large. As a consequence, values of R∞ de-
termined from thermally-emitting neutron stars, while in a plausible range, are not suffi-
ciently precise at present to usefully restrict properties of dense matter. In the case of RX
J185635-3754, Walter and Lattimer30 and Braje andRomani31 separately deduced values
of the neutron starmass and radius shown in Fig. 5.2. These estimates suggest relatively
large neutron star radii with R∞ > 14 km begin favored; the canonical 1.4 M�, 10 km star
is disfavored.
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5.2.1. Estimates from Quiescent X-ray Bursters in Globular Clusters

In this context, the recent discovery of thermal radiation from quiescent x-ray bursters
in globular clusters is particularly interesting. These systems contain rejuvenated 10 bil-
lion year-old neutron stars heated by recent episodes of mass accretion from their com-
panions. Since the accreted material was dominated by hydrogen, and accretion is known
to quench magnetic fields, these stars may have the simplest of all possible atmospheres:
non-magnetic hydrogen. Measurements from the neutron star X7 in the Globular Cluster
47 Tucanae yield R∞ � 17.5 ± 2.5 km (see Fig. 5.3)32. For 1.4 M�,this implies a radius
range fom 12 to 17 km. Accuracy is limited by systematic uncertainties in the interven-
ing interstellar hydrogen column density, since this material obscures 50% or more of the
x-ray flux and by the distance to the globular cluster. In addition, although a pure H
atmosphere was assumed, small heavy element contamination cannot be ruled out, which
would decrease radii. Heavy elements could be present only if accretion was ongoing, but
the stability of the observed X-ray flux implies that it is not. Interestingly, the distances
to these sources will likely become relatively well known in the near future, reducing a
source of error that plagues interpretations of isloated neutron stars.
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Figure 5.3: Estimated ranges of masses and radii of the neutron stars X7
in 47 Tucanae. Confidence contours are 1-, 2- and 3-sigma, respectively,
for hydrogen atmosphere models. From Ref. 32.
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5.2.2. Estimates from Active X-ray Bursters

Neutron stars that are actively accreting material from companion stars produce x-
ray bursts. The resulting light curves can be modelled taking into account light-bending
which constrains the star’s compactness. For the source XTE J1814-338, Bhattacharyya
et al.33 foundz < 0.38. For the source 4U 1820-30, Shaposhnikov & Titarchuk34 found
0.20 < z < 0.30with a small dependence upon assumed source distance. These estimates
are based on a geometric technique and are argued to be insensitive to spectral modelling.

Two lines observed in x-ray burst spectra of EXO 0748-676 have been suggested to
be H- and He-like Fe lines and imply z � 0.35 35. This inference received additional
credibility by themeasurement 36 of a 45 Hz neutron starspin frequency. This low spin
rate is consistent with the observed equivalent widths of these lines if they are due to Fe
and further implies 9.5 < R < 15 km (corresponding to 1.5 < M < 2.3 M�). Since this
star is a member of an eclipsing binary, an independent mass measurement might yet be
possible, which could fix R. These techniques could potentially be extended to other x-ray
bursters.

5.3. Pulsar Glitches

Pulsars provide several sources of information concerning neutron star properties. The
fastest pulsars provide constraints on neutron star radii. Their spins and spin-down rate
provide estimates of magnetic field strengths and ages. A potentially rich source of data are
pulsar glitches, the occasional disruption of the otherwise regular pulses. While the origin
of glitches is unknown, their magnitudes and stochastic behavior suggests they are global
phenomena 37. The leading glitchmodel involves angular momentum transfer in the crust
from the superfluid to the normal component 38. Both are spinning, but the normal crust
isdecelerated by the pulsar’s magnetic dipole radiaion. The superfluid is weakly coupled
with the normal matter and its rotation rate is not diminished. But when the difference
in spin rates becomes too large, something breaks and the spin rates are brought closer in
alignment. The angular momentum observed to be transferred between the components,
in the case of the Vela pulsar, amounts to at least 1.4% of the star’s total 37.

If this also corresonds to the fraction of the moment of inertia residing in the neutron
star crust, limits can be set on the star’s mass and radius. In terms of the density and
pressure nt and Pt, at the base of the crust, this fraction is37

∆I

I
� 28π

3
PtR

4

GM2

1 − 1.67β − .6β2

1 + (2Pt/ntβ2) (1 + 5β − 14β2)
. (5.2)

The dependence on nt is weak. Pt and nt depend on the symmetry energy’s density depen-
dence as well as on the incompressibility. Hence, there is a range 0.25 < Pt/(MeV fm−3) <
0.65 among published EOS’s. For given values of ∆I/I and M , the smallest R compatible
with Eq. (5.2) is obtained employing the largest Pt value in this range. For a 1.4 M� star,
this leads to the limit shown in Fig. 4.3. This limit has a relatively weak dependence on
the EOS (R ∝ P

−1/4
t ); however, it applies only to the Vela pulsar, and it depends upon

the crustal superluid coupling hypothesis.
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5.4. Moments of Inertia From Relativistic Binaries

It might be possible to measure the entire moment of inertia of a neutron star using
pulsar timing in relativistic binaries. Spin-orbit coupling produces two relativistic effects
that could be measured: a small extra advance of the periastron of the orbit beyond
the standard post-Newtonian advance, and the precession of the pulsar spins about the
direction of the total angular momentum of the system, an effect also known as geodetic
precession39−40.

Since the total angular momentum remains fixed, the precession of the pulsar spins
produces a compensating change in the orientation of the orbital plane. Since the orbital
angular momentum dominates the spin angular momenta, the geodetic precession ampli-
tude is very small while the associated spin precession amplitudes are substantial. The
spin-orbit effects usually simplify because one star (hereafter called A) spins much faster
than the other star B. Then, all observable spin-orbit effects are proportional to the mo-
ment of inertia of pulsar A, IA. To lowest post-Newtonian order, the spin �SA and orbital
�L angular momenta evolve according to 39,

�̇SA =
2π

PpA

�L × �SA

|�L| ,
˙�LSO =

2π

PpA

(
�SA

|�L| − 3
�L · �SA

|�L|3
�L

)
, (5.3)

where a and e are the orbital semimajor axis and the eccentricity, respectively, and the
precesion period PpA and |�L| are

PpA =
2aP (MA+MB)c2(1−e2)

GMB(4MA+3MB)
, |�L| =

2πMAMBa2
(
1 − e2

)1/2

P (MA + MB)
. (5.4)

P is the binary orbital period. If θA is the angle between �SA and �L, the amplitude of the
change in the orbital inclination i due to A’s precession is

δi =
| �SA|
|�L| sin θA � IA (MA + MB)

a2MAMB (1 − e2)1/2

P

PA
sin θA , (5.5)

where PA is A’s spin period. This will cause a periodic departure from the expected
time-of-arrival of pulses from pulsar A of amplitude (for e � 0)

δta =
MB

MA + MB

a

c
δi cos i =

a

c

IA

MAa2

P

PA
sin θA cos i . (5.6)

The ratio of the periastron advances due to spin-orbit coupling and to first-order post
Newtonian contributions is 40

ApA

A1PN
=

IA (4MA + 3MB)P

6 (1 − e2)1/2
Ma2MAPA

(2 cos θA + cot i sin θA sinφA) , (5.7)

where φA is the angle between the line of sight to pulsar A and the projection of �SA on
the orbital plane.
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Figure 5.4: The moment of inertia scaled by M3/2. EOS labels are de-
scribed in Ref. 16. The shaded band illustrates a ±10% error on a hypothet-
ical I/M3/2 measurement of 50 km2 M−1/2

� ; the error bar is for M = 1.34
M�. The dashed curve labelled Crab is a lower limit for the Crab pulsar.

It is noteworthy that the net timing delays due to inclination shifts due to precession
are more than an order of magnitude larger for PSR 1913+16 and PSR 1534+12 than for
PSR 0737-3039, due to their smaller inclinations. In particular, PSR 0737-3039 has a nearly
edge-on orbit, i � 90◦, and a small misalignment angle θA that make the inclination timing
delays extremely small. However, these same attributes render the spin-orbit contribution
to the periastron advance about 6 times larger than for the other two systems. Coupled
with 0737’s shorter precession period, this produces a factor 24 in observability for this
effect, which has remained undetectable in other systems. It is expected that IA can be
determined to about 10% after a few years observations17.

The importance of a measurement of I to within ±10% is illustrated in Fig. 5.4.
The curve Crab illustrates a limit for the Crab pulsar41. It is clear that relatively few
equationsof state would survive these constraints. Those families of models lying close to
the measured values would have their parameters limited correspondingly. Using Eq. (4.14)
should then allow a measurement of R, since M is precisely known. For a 1.4 M� star, a
10% uncertainty in K would result in a radius estimate with about 6 to 7% uncertainty.
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Figure 6.1: The main stages of evolution of a neutron star. Roman
numerals indicate various stages described in the text. The radius R and
central temperatures Tc for the neutron star are indicated as it evolves in
time t.

6. Evolution of Neutron Stars

6.1. Neutron Star Birth

Neutron stars are created in the aftermath of the gravitational collapse of the core of a
massive star (> 8 M�) at the end of its life, which triggers a Type II supernova explosion.
Newly-born neutron stars or proto-neutron stars are rich in leptons, mostly e− and νe.
The detailed explosion mechanism of Type II supernovae are not understood 42, but it is
probable that neutrinos play a crucialrole.

Core collapse halts when the star’s interior density exceeds n0, which triggers the
formation of a shock wave at the core’s outer edge. The shock wave propagates only about
100 to 200 km before it stalls, having lost energy to neutrinos and from nuclear dissociation
of the material it has plowed through (stage (I) in Fig. 6.1). Apparently, neutrinos from the
core, assisted perhaps by rotation, convection and magnetic fields, eventually resuscitate
the shock, which within seconds accelerates outwards, expelling the massive stellar mantle.
The proto-neutron star left behind rapidly shrinks due to pressure losses from neutrino
emission in its periphery (stage II). The escape of neutrinos from the interior occurs on
a diffusion time of seconds. Neutrinos observed from SN 1987A in the Large Magellanic
Cloud confirmed this time scale and the overall energy release of � 3 × 1053 ergs43−44.

The loss of neutrinos and lepton number neutronizes the matter. In the core, the µνe ∼
300 MeV but Eq. (1.8) shows that neutrinos escape with Eν,esc ∼ 20 MeV. The energy
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Figure 6.2: Temporal and radial variation of entropy per baryon s, T ,
baryon density nB, the net electron neutrino abundance Yν , electron neu-
trino chemical potential µνe, and the net electron concentration Ye inside a
proto-neutron star. Taken from Ref. 45; the simulation uses the EOS GM3
for nucleons-only matter. Labels indicate time in seconds. The abscissa
shows the enclosed baryonic mass.

left behind warms the stellar interior (Fig. 6.2), more than doubling the core temperature
(stage III), reaching ∼ 50 MeV. After 10 to 20 s, however, the steady emission of neutrinos
begins to cool the interior45. Because the cross section σ ∝ λ−1 scaleslike the square of the
mean neutrino energy, the condition λ > R is achieved in about 50 s. The star becomes
transparent to neutrinos (stage IV), and its cooling rate accelerates.

The proto-neutron star, in some cases, might not survive its early evolution, collapsing
instead into a black hole. This could occur in two different ways. First, proto-neutron
stars accrete mass which has fallen through the shock. This accretion terminates when the
shock lifts off, unless the star’s mass has exceeded the theoretical maximum mass. It would
then collapse and its neutrino signal would abruptly cease46. A second mode of black hole
creation ispossible47 since the maximum massis enhanced relative to a cold star by extra
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leptons and thermal energy. The star’s mass might be between the proto-neutron star
maximum mass and the cold maximum mass. If so, collapse to a black hole would occur
on a diffusion time of 10 to 20 s, longer than in the first case. Perhaps such a scenario
could explain the enigma of SN 1987A. The 10 s duration of the neutrino signal confirmed
the existence of a proto-neutron star, yet there is no evidence that a neutron star now
exists in this supernova’s remnant. The remnant’s observed luminosity is fully accounted
for by radioactivity in the ejected meaning that any contribution from magnetic dipole
radiation, expected from a rotating magnetized neutron star, is very small. Either there is
presently no neutron star, or its spin rate or magnetic field are substantially smaller than
those of typical pulsars. A delayed collapse scenario could account for these observations.

6.2. Neutron Star Cooling

The interior of a proto-neutron star loses energy at a rapid rate by neutrino emission.
Within 10 to 100 y, the thermal evolution time of the crust, heat transported by electron
conduction into the interior, where it is radiated away by neutrinos, creates an isothermal
structure (stage (V) in Fig. 6.1). The star continuously emits photons, dominantly in
x-rays, with an effective temperature Teff that tracks the interior temperature but about
100 times smaller. The energy loss from photons is swamped by neutrino emission from
the interior until the star becomes about 3 × 105 y old (stage VI).

The overall time that a neutron star will remain visible to terrestrial observers is not
yet known, but there are two possibilities: the standard and enhanced cooling scenarios.
The dominant neutrino cooling reactions are of a general type, known as Urca processes, in
which thermally excited particles alternately undergo beta and inverse-beta decays. Each
reaction produces a neutrino or antineutrino, and thermal energy is thus continuously lost.

The most efficient Urca process is the direct Urca process involving nucleons:

n → p + e− + ν̄e , p → n + e+ + νe . (6.1)

This process is only permitted if energy and momentum can be simultaneously conserved.
The condition n

1/3
n ≤ n

1/3
p + n

1/3
e with np = ne = nYe requires that the proton to neutron

ratio exceeds 1/8, or Ye ≥ 1/9, which is far above the value found in neutron star matter
in the vicinity of n0. However, in a mixture of neutrons, protons and electrons, Eq. (3.1)
suggests that the proton fraction Ye satisfies

Ye � 0.048
n0

n

[
Esym (n)

Sv
(1 − 2Ye)

]3

, (6.2)

where, typically, Sv � 30 MeV. Because Ye generally increases with density, the direct Urca
process might still occur above some density threshold48. However, if the direct process is
not possible,neutrino cooling must occur by the modified Urca process

n + (n, p) → p + (n, p) + e− + ν̄e , p + (n, p) → n + (n, p) + e+ + νe , (6.3)

in which an additional nucleon (n, p) participates in order to conserve momentum. The
modified Urca rate is reduced by a factor of (T/µn)2 ∼ 10−4 to 10−5 compared to the
direct Urca rate, and neutron star cooling is correspondingly slower. The standard cooling
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Figure 6.3: Observational estimates (boxes) of neutron star temperatures
and ages together with theoretical cooling simulations (curves) for M =
1.4 M�, described in Ref. 51. Green boxes indicate sources from which
both thermal optical and X-ray emissions have been observed. Simulations
with Fe (H) envelopes are displayed by solid (dashed) curves; simulations
including (excluding) effects of superfluidity are red (blue). The upper four
curves include cooling from modified Urca processes only, the lower two
curves allow enhanced cooling from direct Urca processes and neglect effects
of superfluidity. The yellow region encompasses models with enhanced
cooling and supefluidity.

scenario assumes that direct Urca processes cannot occur, and predicts that neutron stars
should remain observable by surface thermal emission for up to a few million years.

The question of whether or not the direct Urca process occurs in neutron stars is
of fundamental importance. The density dependence of the symmetry energy function
Esym determines the values of Ye and the threshold density at which the nucleonic direct
Urca process occurs (see Eq. (6.2)). It also plays an essential role in determining the
threshold densities of other particles, such as hyperons, pions, kaons or quarks, whose
existences trigger other direct Urca processes49. If astar’s central density lies below the
Urca threshold, enhanced cooling cannot occur. Once again, the quantity Sv(n) plays
a crucial role for neutron stars, and its inherent uncertainty means that it is presently
unknown if direct Urca processes can occur in neutron stars.

There are two additional issues affecting cooling trajectories of neutron stars: superflu-
idity and envelope composition. Superfluidity quenches cooling from the direct Urca pro-
cess. However, an additional cooling source from the formation and breaking of nucleonic
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Cooper pairs increases the cooling rate from the modified Urca process50. Nevertheless, a
cleardistinction remains between enhanced and standard cooling trajectories51.

Envelope composition also plays a role in the inferred surface temperatures. Although
it is commonly assumed that the envelope is dominated by iron-peak nuclei, this may not
be the case. Light elements (H or He) have smaller photon opacities which enhance surface
photon emission. Neutron stars appear warmer with light-element envelopes for their first
100,000 years of cooling but eventually the situation reverses51.

Theoretical cooling curves can be compared to observations if ages for the thermally-
emitting neutron stars can be estimated (Fig. 6.3). The best-determined ages are those
for which dynamical information, such as observed space velocities coupled with a known
birthplace, is available. Characteristic spin-down ages estimated from pulsar periods P
and spin-down rates Ṗ using τs = P/2Ṗ are less reliable. In the cases in which both kinds
of age estimates are available, they are generally discrepant by factors of 2 to 3.

Theoretical cooling tracks, for a variety of mass, radius and superfluid properties, are
relatively narrowly confined as long as enhanced cooling does not occur51. These tracks are
mostly sensitive to envelope composition. When enhanced cooling is considered, cooling
tracks fall in a much wider range (yellow region in Fig. 6.3). While most observed stars
are consistent with the standard cooling scenario, a few cases for which only upper limits
to temperature and luminosity exist may suggest enhanced cooling52; these are shown
inFig. 6.3. Uncertainties in estimated temperature and ages have precluded definitive
restrictions on EOS’s or superfluid properties from being made.
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