A Program of Long Baseline Neutrino Exploration at Fermilab

R. Ray Fermilab

April 8, 2005

What we know, what we would like to know...

The Fermilab long-range plan for long baseline experiments addresses all of these issues in a step-by-step program of detectors and beamline upgrades.

MINOS (Main Injector Neutrino Oscillation Search)

Long baseline oscillation experiment designed to:

- Demonstrate oscillation behavior
 - Confirm and describe flavour oscillations
 - Provide high statistics discrimination against alternative models (decoherence, v decay, extra dimensions, etc.)
- Precise Measurement of Δm_{23} to ~ 10%
- Search for $v_{\mu} \rightarrow v_{e}$ oscillations (θ_{13})
- First direct measurement of v vs v oscillations from atmospheric neutrino events
 - MINOS is the first large deep underground detector with a B-field

The NuMI beam

120 GeV protons extracted from the Main Injector in a single turn (8.7ms)

1.9 s cycle time *i.e.* v beam
 `on' for 8.7 ms every 1.9 s

- 2.5x10¹³ protons/pulse initially
- 2.5x10²⁰ protons/year initial intensity
- 0.25 MW on target !
- 0.4 MW at 4x10¹³ p/pulse!

Tuneable Beam

- Relative position of target and horns allows tuning of beam energy. Act like a pair of highly achromatic lenses.
- MINOS starts with LE beam best for \Delta m² ~ 0.002 eV²
- Can run neutrinos or antineutrinos

NOvA NuMI Off-Axis V_e Appearance Experiment

Argonne, Athens, Caltech, UCLA, Fermilab, College de France, Harvard, Indiana, ITEP, Lebedev, Michigan State, Minnesota/Duluth, Minnesota/Minneapolis, Munich, Stony Brook, Northern Illinois, Ohio, Ohio State, Oxford, Rio de Janeiro, Rutherford, South Carolina, Stanford, Texas A&M, Texas/Austin, Tufts, Virginia, Washington, William & Mary, Wisconsin

Goals of the NOvA Experiment

- Observe v_e appearance
- Sensitivity to Sin²($2\theta_{13}$) a factor of 10 below CHOOZ sensitivity, i.e. down to ~ 0.01
- $Sin^2(2\theta_{23})$ measurement to 2% accuracy
- Resolve or contribute to determination of mass hierarchy via matter effects
- Begin to study CP violation in lepton sector

How NOvA Will Meet its Goals

- Reduce backgrounds to v_e appearance search by going off the NUMI beam axis for a narrow-band beam. Will use Medium Energy configuration.
- Increase flux/POT at oscillation max by ~2 by going off-axis
- Increase detector mass a factor of 6 over MINOS while reducing cost/kiloton by a factor of 3
- 80% active detector design (compared to 1.5 X₀ sampling in MINOS)
 - electron showers appear as "fuzzy" tracks with 1-4 hits/plane/view
 - allow better separation of γ 's from π^0 decays
 - good energy resolution to focus on signal energy region
- Choose long baseline to enhance matter effects

Off-Axis Neutrino Beams

First proposed by BNL E-889

NUMI Neutrino Spectra

Event Rates

Event rates calculated for

- L=810 km, 12 km off-axis
- $\Delta m_{23}^2 = 2.5 \times 10^{-3} \text{ eV}^2$ • Sin²2 $\theta_{23} = 1$
- $Sin^2 2\theta_{13} = 0.01$
- To Reject Background:
- 50:1 rejection of ν_μ CC required
 Easy!
- Need 100:1 NC rejection fine grained, low density
- Good energy resolution
 reject beam v_e

The NOvA Far Detector

Typical NOvA Event: $v_e A \rightarrow p e^- \pi^0$, $E_v = 1.65 \text{ GeV}$

NOvA Near Detector

•~1 km from NUMI target

• Fits in several existing locations in NUMI access tunnel

- 3.5 m x 4.8 m x 9.6 m
- Includes veto, shower containment, muon catcher^{200,000}

No single location optimizes all parameters

Make movable or build more than 1

NOvA Milestones

Milestone	Date (in months relative to Project Start)	Proposed Calendar Date	FY
Project Start	t _o	October, 2006	07
Order extrusions and fiber	t _o +1	Nov., 2007	07
Start extrusion module factories	t ₀ +12	October, 2007	80
Start operation of Near Detector	t ₀ +21	July, 2008	08
Far building complete	t _o +31	May, 2009	09
Start Construction of Far detector	t _o +31	May, 2009	09
First kiloton operational	t _o +36	Oct., 2009	10
First 15 kilotons operational	t ₀ +47	June 2010	10
Full 30 kilotons operational	t ₀ +57	July, 2011	11

Fermilab Proton Plan

	Booster Batch Size	Main Injector Load	Cycle Time	MI Intensity	Booster Rate*	Total Proton Rate	Annual Rate at end of Phase		
		(AP + NuMI)	(sec)	(protons)	(Hz)	(p/hr)	NuMI	BNB	
Actual Operation									
July, 04	5.0E+12	1+0	2.0	0.5E+13	5.1	0.8E+17	0	3.3E+20	
Proton Plan									
Phase I	5.10E+12	2+1→2+5	2.0	3.6E+13	6.3	1.0E+17	2.0E+20	1.5E+20	
Phase II	5.3E+12	2+5	2.0	3.7E+13	7.5	1.2E+17	2.2E+20	2.8E+20	
Phase III	5.50E+12	2+9	2.2	6.0E+13	8.3	1.5E+17	3.4E+20	2.2E+20	
Beyond Scope of Present Plan									
11 Hz	5.50E+12	2+9	2.2	6.1E+13	11.0	2.0E+17	3.4E+20	5.0E+20	

TABLE 6: Performance parameters at the completion of each phase of operation.

* Booster rate is limited by radiation levels, except for the 11 Hz case

http://www.fnal.gov/directorate/program_planning/Nov2004PACPublic/Draft_Proton_Plan_v2.pdf

Fermilab Proton Plan after 2009

Collider operations end in 2009

- Proton bunches in MI used to \overline{p} now available to NuMI $\rightarrow \times 11/9$
- No NuMI downtime due to shot setup (10%) or antiproton transfers to Recycler (5%)

 Load 11 booster batches into Recycler and transfer from Recycler to MI in a single booster cycle. MI cycle time reduced from 2.2 s to 1.467 s

• (1.22)(1.176)(1.5)(3.4 × 10²⁰ p/yr) = 7.3 × 10²⁰ p/yr

Assume 90% \rightarrow 6.5 × 10²⁰ p/yr

 $\rightarrow \times 1176$

 $\times 1.5$

Statistically Limited

 NOvA will be statistically limited. Thus, the power of the experiment is proportional to mass times the neutrino flux.

• A Fermilab Proton Driver would provide 25 x 10²⁰

Same effect as building 4 NOvA's which would cost \$500M more and be truly enormous:

Interpreting what we measure

- Experiments measure oscillation probabilities
- Ambiguities in $sin^2(2\theta_{13})$ due to CP phase δ and mass hierarchy
- Comparison of NOvA and T2K at different baselines can break ambiguities
- Possibly use a 2^d NUMI off-axis detector at the 2^d oscillation maximum
- Sensitivity varies with CP phase

 $sin^{2}(2\theta_{13})$ vs. $P(\bar{v}_{e})$ for $P(v_{e}) = 0.02$ $\sin^2(2\theta_{13})$ 0.1 L = 810 km, 12 km off $\Delta m_{22}^2 = 2.5 \ 10^{-3} \ eV^2$ 0.09 0.08 Inverted hierarch 0.07 0.06 $\Delta m^2 < 0$ 0.05 $\Delta m^2 > 0 / 1$ 0.04 $\circ \delta = 0$ $\delta = \pi/2$ $\Box \delta = \pi$ 0.03 Normal hierarchy δ = 3π/2 0.02 0.03 0.04 0.05 0.06 0.01 0.02 P(v)

Quote sensitivities vs the fraction of the CP ellipse covered

$Sin^{2}(2\theta_{13})$ Sensitivity

- Vertical axis is the fraction of possible δ values for which a 3σ discovery could be made.
- At large values of $\sin^2(2\theta_{13})$ a 3σ discovery can be made for all values of δ .
- At lower values of $sin^2(2\theta_{13})$ a 3σ discovery is only possible for a range of δ .
- 5% systematic error on background determination included.

Resolving the Mass Hierarchy

There is a reasonable region of parameter space for which NOvA can resolve hierarchy. Proton Driver extends reach by factor of 2.

Resolving the Mass Hierarchy (cont.)

6 years with 2 detectors

NOvA alone and with an additional off-axis detector at the 2^d maximum

At 2^d oscillation maximum

- L=710 km, 30 km off-axis
- Energy lower by x 3
 Matter effect smaller by x 3
 CP violation larger by x 3

Mass hierarchy resolved for all δ for Sin²(2 θ_{13}) > ~ 0.015

95% C.L. Resolution of Mass Hierarchy

Sensitivity to CP Violation

 Neither NOvA nor T2K can demonstrate CP violation in 6 years of running without enhanced proton sources

Sensitivity to CP Violation (cont.)

R. Ray - Fermilab

Precise Determination of $Sin^2(2\theta_{23})$

Important because:

If mixing is maximal, could be due to unknown symmetry
 v_µ → v_e oscillation is proportional to sin²(θ₂₃)sin²(2θ₁₃).
 If mixing is not maximal, this leads to an ambiguity in comparing reactor and accelerator results.

Precision measurement requires

- good statistics
- excellent v energy resolution
- good control of systematics

Use totally contained quasi-elastic events

- Very clean, essentially no NC background
- Can measure $\sin^2(2\theta_{23})$ to ~ 1-2% level

Precise Determination of $Sin^2(2\theta_{23})$

For maximal mixing, error on $sin^2(2\theta_{23})$ is about 0.004 without Proton Driver and 0.002 with a Proton Driver.

Summary

- Fermilab's long-range plan includes an ongoing program of long baseline neutrino experiments.
- MINOS is the first step in this program and is just now underway (see talk by Mary Bashi at this workshop).

NOvA would be the next step

- Presented current design to Fermilab PAC yesterday
- Hoping for rapid consideration, by June at the latest
- NuSAG review by funding agencies to report in June
- NOvA and Fermilab are very open to new collaborators
- A Proton Driver is being considered to augment the neutrino program and to support a wide range of other physics programs (see talk by John Ellis at this workshop)
- In some scenarios a 2^d NUMI off-axis detector at the 2^d maximum is helpful