Large Excavations in the US

Lee Petersen, CNA Consulting Engineers
Presented by
Chang Kee Jung, SUNY Stony Brook
Topics

• DUSEL sites
• Site characteristics important for large excavations
• Rock engineering
• Relative importance of site characteristics
• Megaton detector feasibility

April 2005
Solicitation 2 Sites

- Cascades-Icicle Creek, WA
 - Greenfield escarpment site & nearby railroad tunnel
- Henderson Mine, Empire, CO
 - Operating molybdenum mine since mid 1970s
- Homestake Mine, Lead, SD
 - Former operating gold mine
- Kimballton Mine, Giles Co., VA
 - Limestone mine & adjacent subsurface
Solicitation 2 Sites

- San Jacinto, CA
 - Greenfield escarpment site
- Soudan Mine, Soudan, MN
 - Operating lab at former iron mine, expansion into adjacent subsurface
- SNOLAB, Sudbury, Ontario
 - Operating lab in operating nickel mine
- WIPP, Carlsbad, NM
 - Operating lab in operating low-level waste facility
Characteristics for Large Excavations

- What site characteristics are important for large excavations?
 - Depth / shielding capacity
 - Rock type / rock chemistry
 - Rock quality / In situ stress
 - Access / rock removal

- Will review each characteristic for each site

- All comments that follow are for large excavations, not DUSEL in general
Depth / Shielding Capacity

<table>
<thead>
<tr>
<th>DUSEL Site</th>
<th>Depth / Shielding Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cascade</td>
<td>Adequate</td>
</tr>
<tr>
<td>Henderson mine</td>
<td>Adequate</td>
</tr>
<tr>
<td>Homestake mine</td>
<td>Adequate</td>
</tr>
<tr>
<td>Kimballton</td>
<td>Adequate</td>
</tr>
<tr>
<td>San Jacinto</td>
<td>Adequate</td>
</tr>
<tr>
<td>Soudan</td>
<td>Adequate</td>
</tr>
<tr>
<td>SNOLAB</td>
<td>Adequate</td>
</tr>
<tr>
<td>WIPP</td>
<td>Adequate</td>
</tr>
</tbody>
</table>
Rock Type / Rock Chemistry

<table>
<thead>
<tr>
<th>DUSEL Site</th>
<th>Rock type / chemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cascade</td>
<td>Igneous, insoluble</td>
</tr>
<tr>
<td>Henderson mine</td>
<td>Igneous, insoluble</td>
</tr>
<tr>
<td>Homestake mine</td>
<td>Igneous/metamorphic, insoluble</td>
</tr>
<tr>
<td>Kimballton</td>
<td>Sedimentary, insoluble</td>
</tr>
<tr>
<td>San Jacinto</td>
<td>Igneous/metasediments, insoluble</td>
</tr>
<tr>
<td>Soudan</td>
<td>Igneous/metamorphic, insoluble</td>
</tr>
<tr>
<td>SNOLAB</td>
<td>Igneous/metamorphic, insoluble</td>
</tr>
<tr>
<td>WIPP</td>
<td>Sedimentary, soluble</td>
</tr>
</tbody>
</table>
Rock Quality / In situ Stress

Summary of available information about site rock quality.

<table>
<thead>
<tr>
<th>DUSEL Site</th>
<th>Rock quality / In situ Stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cascade</td>
<td>Nearby railroad tunnel</td>
</tr>
<tr>
<td>Henderson mine</td>
<td>Existing info & nearby mine excavations</td>
</tr>
<tr>
<td>Homestake mine</td>
<td>Existing info & nearby mine excavations</td>
</tr>
<tr>
<td>Kimballton</td>
<td>Existing info & nearby mine excavations</td>
</tr>
<tr>
<td>San Jacinto</td>
<td>Some tunneling nearby</td>
</tr>
<tr>
<td>Soudan</td>
<td>Existing info & existing lab caverns (different rock)</td>
</tr>
<tr>
<td>SNOLAB</td>
<td>Existing info & existing lab cavern</td>
</tr>
<tr>
<td>WIPP</td>
<td>Existing info & existing excavations</td>
</tr>
</tbody>
</table>

No site has sufficient experience to be sure that a megaton detector is feasible!

April 2005
Rock Engineering 101

• Rock “material” — strong, stiff, brittle
 – Weak rock > Strong concrete
 – Strong in compression, weak in tension
 – Postpeak strength is low unless confined

• Rock “mass” — behavior controlled by discontinuities
 – Rock mass strength is 1/2 to 1/10 of rock material strength

• Discontinuities give rock masses scale effects
Rock Engineering 101

- Massive rock
 - Rock masses with few discontinuities, or
 - Excavation dimension < discontinuity spacing
Rock Engineering 101

• Jointed or “blocky” rock
 – Rock masses with moderate number of discontinuities
 – Excavation dimension > discontinuity spacing
Rock Engineering 101

• Heavily jointed rock
 – Rock masses with a large number of discontinuities
 – Excavation dimension >> discontinuity spacing
Rock Engineering 101

• Rock stresses in situ
 – Vertical stress \(\approx \) weight of overlying rock
 – \(~27\) KPa / m \(\Rightarrow 35.7\) MPa at \(1300\) m
 – Horizontal stress controlled by tectonic forces
 (builds stresses) & creep (relaxes stresses)
 – At depth, \(\sigma_v \approx \sigma_h\) unless there are active tectonic forces
Major Rock Features

• Examples
 – Geologic contacts
 – Joint swarms
 – Shears and faults

• Effects
 – Reduced rock quality
 – Reduced strength
 – Locus for rockburst / seismic activity
April 2005

Effect of Major Rock Features

[Diagram showing geological and structural features with annotations and measurements]

5% Stress Change

[Additional annotations and measurements related to geological stresses and rock mechanics]
Numerical Modeling

- Rock engineering equivalent of bridge or building structural analysis
- Develop understanding of the critical physical parameters
 - Rock characteristics
 - Rock stresses
 - Cavern shape
 - Rock support & reinforcement
- Common types
 - Continuum
 - Discontinuum
Simple example

- Continuum model FLAC 2D
- 60 x 60 x 180 meters (length not modeled)
- Curved roof & straight walls
- Depth 1300 meters
- Stresses ≈ depth
- Example rock properties
- Sequential excavation
- Rock reinforcement
- Model permits rock failure
Sequential excavation
Effect of Rock Strength

April 2005
Cablebolt Forces
Rock Mass Characterization

- **Stages**
 - Choose the best site
 - Find best location at the chosen site
 - Prove rock conditions at chosen location

- **Volume of rock necessary**

- **Technical objectives**
 - Provide design basis
 - Choose proper design and construction techniques
 - Reduce risk of differing site conditions
 - Basis for cost estimating
 - Basis for defining baseline, i.e. contractor bidding
Access / Rock Removal

<table>
<thead>
<tr>
<th>DUSEL Site</th>
<th>Access / Rock Removal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cascade</td>
<td>Horizontal access & nearby railroad tunnel</td>
</tr>
<tr>
<td>Henderson mine</td>
<td>10-mile ore conveyor</td>
</tr>
<tr>
<td>Homestake mine</td>
<td>Existing shaft ore handling equipment</td>
</tr>
<tr>
<td>Kimballton</td>
<td>Inclined tunnel to surface</td>
</tr>
<tr>
<td>San Jacinto</td>
<td>Horizontal access</td>
</tr>
<tr>
<td>Soudan</td>
<td>Shaft</td>
</tr>
<tr>
<td>SNOLAB</td>
<td>Shaft & underground use</td>
</tr>
<tr>
<td>WIPP</td>
<td>Shaft</td>
</tr>
</tbody>
</table>

April 2005
Conclusions about important features

• Depth / shielding capacity
 – All sites appear adequate

• Rock type / rock chemistry
 – All sites appear adequate, but salt at WIPP may be problematic (due to creep & solubility)

• Rock quality / In situ stress
 – All sites are potentially suitable, but none are guaranteed feasible

• Access / rock removal
 – All sites are potentially suitable, but horizontal access is beneficial
What is MOST important?

• Rock type / rock chemistry
 – Creep & solubility are the principal issues

• Rock quality / In situ stress
 – Commonly influences costs by a factor of 2 to 4, could make a site unfeasible

• Access / rock removal
 – Can influence costs significantly, but is very site dependent
Rock Engineering 101

• What are the implications for large cavern construction?
 – Find a site with excellent rock
 – Characterizing the rock mass is JOB ONE
 – Avoid tectonic zones & characterize in situ stresses
 – Select size, shape & orientation to minimize rock support, stress concentrations, etc.
• Soudan 2 & MINOS caverns
Cost & Risk vs. Site Investigation

- Upper Bound of Project Cost
- Lower Bound of Project Cost

Increased Site Investigation $ vs. Project Cost Range

Actual Cost

April 2005
Questions?
Concluding Remarks

• Is a megadetector feasible? Qualified yes
• What are the qualifications?
 – Rock conditions & depth
 • Best location at the best site, not too deep
 – Enlightened funding agencies
 • Understand & manage the risks, cost uncertainties
 – Site factors
 • Rock removal, competing demands for resources
 – Contractor
 • Chosen on cost & qualifications