NNN05 Conference

Large Excavations in the US

Lee Petersen, CNA Consulting Engineers Presented by Chang Kee Jung, SUNY Stony Brook

Topics

- DUSEL sites
- Site characteristics important for large excavations
- Rock engineering
- Relative importance of site characteristics
- Megaton detector feasibility

DUSEL Site Locales

Solicitation 2 Sites

- Cascades-Icicle Creek, WA
 - Greenfield escarpment site & nearby railroad tunnel
- Henderson Mine, Empire, CO

 Operating molybdenum mine since mid 1970s
- Homestake Mine, Lead, SD
 - Former operating gold mine
- Kimballton Mine, Giles Co., VA
 - Limestone mine & adjacent subsurface

Solicitation 2 Sites

- San Jacinto, CA
 - Greenfield escarpment site
- Soudan Mine, Soudan, MN
 - Operating lab at former iron mine, expansion into adjacent subsurface
- SNOLAB, Sudbury, Ontario
 - Operating lab in operating nickel mine
- WIPP, Carlsbad, NM

- Operating lab in operating low-level waste facility

Characteristics for Large Excavations

- What site characteristics are important for large excavations?
 - Depth / shielding capacity
 - Rock type / rock chemistry
 - Rock quality / In situ stress
 - Access / rock removal
- Will review each characteristic for each site
- All comments that follow are for large excavations, not DUSEL in general

Depth / Shielding Capacity

DUSEL Site	Depth / Shielding Capacity
Cascade	Adequate
Henderson mine	Adequate
Homestake mine	Adequate
Kimballton	Adequate
San Jacinto	Adequate
Soudan	Adequate
SNOLAB	Adequate
WIPP	Adequate

Rock Type / Rock Chemistry

DUSEL Site	Rock type / chemistry
Cascade	Igneous, insoluble
Henderson mine	Igneous, insoluble
Homestake mine	Igneous/metamorphic, insoluble
Kimballton	Sedimentary, insoluble
San Jacinto	Igneous/metasediments, insoluble
Soudan	Igneous/metamorphic, insoluble
SNOLAB	Igneous/metamorphic, insoluble
WIPP	Sedimentary, soluble

Rock Quality / In situ Stress

Summary of available information about site rock quality.

DUSEL Site	Rock quality / In situ Stress
Cascade	Nearby railroad tunnel
Henderson mine	Existing info & nearby mine excavations
Homestake mine	Existing info & nearby mine excavations
Kimballton	Existing info & nearby mine excavations
San Jacinto	Some tunneling nearby
Soudan	Existing info & existing lab caverns (different rock)
SNOLAB	Existing info & existing lab cavern
WIPP	Existing info & existing excavations

No site has sufficient experience to be sure that a megaton detector is feasible!

- Rock "material" strong, stiff, brittle
 - Weak rock > Strong concrete
 - Strong in compression, weak in tension
 - Postpeak strength is low unless confined
- Rock "mass" behavior controlled by discontinuities
 - Rock mass strength is 1/2 to 1/10 of rock material strength
- Discontinuities give rock masses scale effects

- Massive rock
 - Rock masses with few discontinuities, or
 - Excavation dimension
 < discontinuity spacing

- Jointed or "blocky" rock
 - Rock masses with moderate number of discontinuities
 - Excavation dimension
 - > discontinuity spacing

- Heavily jointed rock
 - Rock masses with a large number of discontinuities
 - Excavation dimension
 >> discontinuity
 spacing

- Rock stresses in situ
 - Vertical stress \approx weight of overlying rock - ~27 KPa / m \Rightarrow 35.7 MPa at 1300 m
 - Horizontal stress controlled by tectonic forces (builds stresses) & creep (relaxes stresses)

– At depth, $\sigma_v \approx \sigma_h$ unless there are active tectonic forces

Major Rock Features

- Examples
 - Geologic contacts
 - Joint swarms
 - Shears and faults
- Effects
 - Reduced rock quality
 - Reduced strength
 - Locus for rockburst / seismic activity

Numerical Modeling

- Rock engineering equivalent of bridge or building structural analysis
- Develop understanding of the critical physical parameters
 - Rock characteristics
 - Rock stresses
 - Cavern shape
 - Rock support & reinforcement
- Common types
 - Continuum
 - Discontinuum

Simple example

- Continuum model FLAC 2D
- 60 x 60 x 180 meters (length not modeled)
- Curved roof & straight walls
- Depth 1300 meters
- Stresses \approx depth
- Example rock properties
- Sequential excavation
- Rock reinforcement
- Model permits rock failure

Sequential excavation

Effect of Rock Strength

Cablebolt Forces

Rock Mass Characterization

- Stages
 - Choose the best site
 - Find best location at the chosen site
 - Prove rock conditions at chosen location
- Volume of rock necessary
- Technical objectives
 - Provide design basis
 - Choose proper design and construction techniques
 - Reduce risk of differing site conditions
 - Basis for cost estimating
 - Basis for defining baseline, i.e. contractor bidding

Access / Rock Removal

DUSEL Site	Access / Rock Removal
Cascade	Horizontal access & nearby railroad tunnel
Henderson mine	10-mile ore conveyor
Homestake mine	Existing shaft ore handling equipment
Kimballton	Inclined tunnel to surface
San Jacinto	Horizontal access
Soudan	Shaft
SNOLAB	Shaft & underground use
WIPP	Shaft

Conclusions about important features

- Depth / shielding capacity
 All sites appear adequate
- Rock type / rock chemistry
 - All sites appear adequate, but salt at WIPP may be problematic (due to creep & solubility)
- Rock quality / In situ stress
 - All sites are potentially suitable, but none are guaranteed feasible
- Access / rock removal
 - All sites are potentially suitable, but horizontal access is beneficial

What is MOST important?

- Rock type / rock chemistry
 - Creep & solubility are the principal issues
- Rock quality / In situ stress
 - Commonly influences costs by a factor of 2 to 4, could make a site unfeasible
- Access / rock removal
 - Can influence costs significantly, but is very site dependent

- What are the implications for large cavern construction?
 - Find a site with excellent rock
 - Characterizing the rock mass is JOB ONE
 - Avoid tectonic zones & characterize in situ stresses
 - Select size, shape & orientation to minimize rock support, stress concentrations, etc.
 - Soudan 2 & MINOS caverns

Cost & Risk vs. Site Investigation

Increased Site Investigation \$

Questions?

Concluding Remarks

- Is a megadetector feasible? Qualified yes
- What are the qualifications?
 - Rock conditions & depth
 - Best location at the best site, not too deep
 - Enlightened funding agencies
 - Understand & manage the risks, cost uncertainties
 - Site factors
 - Rock removal, competing demands for resources
 - Contractor
 - Chosen on cost & qualifications

